Blackouts: Revival Call for Power Systems Engineering Education

Parviz Rastgoufard

Entergy Chair in Electric Power Engineering Professor and Chair, Tulane University Electrical Engineering and Computer Science

Content

- Blackout of August 14,2003
- Barriers in training Power Engineers
- Integration of newer topics and ideas in teaching Power Systems Engineering
- Systems approach solution in removing the Barriers
- Concluding Remarks

August 14, 2003 Blackouts: 9/12/03 US/Canada Power Outage Task Force

- Events Leading to the Blackout
 - [1] 12:05:44 Conesville 375 MW Unit 5 trips
 - [2] 1:14:04 Greenwood 785 MW Unit 1 trips
 - [3] 1:31:34 Eastlake 597 MW Unit 5 trips
 - [4] 2:02 Stuart-Atlanta 345 kv Line disconnects
- Transmission Lines Disconnect (E-N Ohio)
 - [5] 3:05:41 Harding-Chamberlain 345 kv
 - [6] 3:32:03 Hanna-Juniper 345 kv
 - [7] 3:41:33 Star-South Canton 345 kv

Sequence of Events Leading to Blackouts

- The three E-N Ohio Trans Lines reduced the MW flow Capacity to North from East Ohio. (All Lines are 345 kv)
- The MW flow over 138 kv lines Increased, the Voltage dropped, and 600 MW disconnected in Northern Ohio
- 3:45:33 4:08:58 PM Line Disconnects
- [8] 3:45:33 Canton Central-Tidd 345 kv (345/138 kv Xformer didn't return to service)
- [9] 4:06:03 Sammis-Star 345 kv
- 138 kv lines in Northern Ohio disconnected themeself

Generation tripping in Michigan

• 4:08:58 to 4:10:27 PM

- [10] 4:08:58 Galion-Ohio Central-Muskingum 345 kv
- [11] 4:09:06 East Lima-Fostoria Central 345 kv
- [12] 4:09:23-4:10:27 Kinder Morgan Rating 500 MW (at 200 MW)
- 4:10:00 to 4:10:38 PM
 - [13-18] More transmission lines disconnect
 - Twenty Generators loaded to 2174 MW tripped off line along Lake Erie
 - Loss of generation increased power flows into Northern Ohio and Eastern Michigan

Possible Causes and Effects of the Blackout

- Apparent Voltage Collapse in Northern Ohio and Eastern Michigan
- Lack of sufficient Reactive Power
- Possible lack of appropriate Balance between Static and Dynamic Reactive Power
- Lack of Remedial Operating Actions: Load shedding, capacitor switching, and dynamic reactive dispatch
- Insufficient Operator Training for dealing with V Collapse
- Installation of insufficient On-line assessment tools
- Transmission of Power close to line Thermal Limits

Designing and Operating a Complex System

- Design of large scale systems with high levels of nonlinearities, time-scale properties, and interconnection
- There are uncertainties in input (loads and weather)
- For near-future power systems, there will be uncertainty for MW-output Price. (Locational Marginal Pricing)
- Real-time Operation (PJM example)
- Inclusion of Financial Transmission Rights (FTRs) that credits the FTR Holder based on Differences in Day-Ahead Congestion of LMPs
- Need for new tools for Modeling, Simulation, Analysis, Design, and Control (Engineering and Management)

Barriers in Training Power Engineers

 Does Engineering Education Have Anything to do With Either One? (Richard M. Felder, October 1982)

- The decline of American Technology
- Hiring neither engineers nor educators to educate engineers
- We discourage good teaching and dedicated teachers
- We are not meeting the needs of our most gifted students
- We are not fostering the creativity needed to solve society's most pressing technological problems

Barriers in Training Power Engineers

- "Review of electric power engineering education worldwide" (IEEE, PES Con in Edmonton, 1999)
- "How much does the U.S. rely on immigrant engineers?" (L. Burton and J. Wang, NSF, NSF 99-327, Feb 1999)
- Electric Power Engineering Resources, IEEE PES Educational Resources Subcommittee, IEEE Transactions, 1996, 1994, and 1992
- Shortage of trained engineering personnel: "For decades things have gone downhill" (IEEE Spectrum).
- "The salaries paid to Power Engineers is lower than those of virtually all other electrical engineers"

Barriers in Training Power Engineers

- Prestige: Student enrollments in PE have steadily declined
- Resources: University programs in PE have been closing
- Electric power industry has been radically reorganizing
- PE employment abroad has enjoyed more prestige and competitive salaries, causing migration and return of PE from US
- The shortage of PE will worsen in the next five years
 (Mycoff & Associates, Placement firm. IEEE Spectrum)
- Utilities will face a large wave of retirements (retiring baby boomers during the next 10-20 yrs). Public Utilities Forthnightly, June 1, 2003

Integration of Newer Topics in Training PE

- Application of Fuzzy Logic in Equipment Maintenance
- Application of Artificial Neural Nets in Forecasting
- Application of Genetic Algorithms in Game Theory
- Application of New Technologies (FACTS) in Power Management
- Application of Optimization Techniques in Locational Marginal Pricing
- Management of Large Scale Transmission System Real-Time Transactions
- Application of Parallel Computing in modeling, simulation, analysis, and control of Power Systems
- Alternative Energy Sources

Applications of Fuzzy Logic in Power Systems

- Contingency Analysis
- Diagnosis/monitoring
- Distribution planning
- Load frequency control
- Generator maintenance
- Generation dispatch
- Load flow computations

- Load forecasting
- Load management
- Reactive power-V. control
- Security assessment
- PS Stabilizers
- Unit commitment

PS Example 1: Load Tap Changer Diagnosis

- Identify a Methodology for LTC Predictive Maintenance
- Apply the Methodology on a most widely used LTC
- Apply Pattern Recognition Methods to discriminate (distinguish) between different data corresponding to different characteristics of the LTC
- Use the discriminated data to alarm an Operator via SCADA system
- Automatically Dispatch maintenance crew to Preventively repair the LTC

Pattern of Good Contacts

Pattern of Deteriorated Contacts

Pattern of Burned Contact Test [5] Vertical Axis is voltages in volts

Horizontal axis (x10,000) is samples at 100,000 samples / sec

LTC Pattern Analysis by HCM and FCM

• Take the LTC data and apply:

- Hard C-Means for two, three, and four clusters
- Fuzzy C-Means for two, three, and four clusters
- Fuzzy C-means for two, three, and four clusters when the data can be clustered in ellipsoids
- Address the above when the number of clusters is not known a priori
- Check the Validity of Clusters for all methods applied above.

Cluster Validity

- Find an objective function for determining "how good" a partition generated by a clustering algorithm is.
- Validity measures:
 - Membership-based validity measures: Measures the Degree of Fuzziness of each Cluster
 - Geometric-based validity measures (extension of the fuzzy C-Means): Measures Compactness and Separation
 - Performance-based validity measures: Measures the Distance between Data and the the Centers

Artificial Neural Networks

- The conventional forecasting methods are not sufficiently Robust in response to rapid change in weather
- Artificial Neural Nets seem to be promising for Short-Term Load Forecasting (STLF)
- ANN learn from historical data by ADJUSTING the STRENGHTS between input, hidden layer neurons, and the outputs

Practical EXAMPLE 2: Voltage Instability

- 1. Select the Optimum Locations for SCB to improve Voltage Stability margin
- 2. Select the proper size of SCB
- 3. Apply Artificial Intelligence to identify the Optimum Location and Size of SCB

Two-Bus System Voltage Variation VS Load Change

PV Curves as a Function of SCB

7 Applied ANN Methods

- Multi-Layer Perceptron MLP
- Generalized FeedForward GFF
- Modular Neural Nets MNN
- Jordan/Elman Neural Net JENN
- Principal Component Analysis PCA
- Radial Basis Function RBF
- Self-Organizing Feature Map SOFM

An investigation of Transient Stability of Power Systems Equipped with FACTS

Figure 1

Single line diagram of test power system equipped with SSSC

An investigation on Transient Stability of Power Systems Equipped with FACTS

Figure 3

Power-angle characteristics of Test Power System

An investigation on Transient Stability of Power Systems Equipped with FACTS

Figure 11

Post-fault variations of δ and ω for Test Power System without SSSC depicting oscillation for *tc* = *tcc*

Toward Systems Approach Solution to Training Power Engineers Problem

- The "electric system" could no longer be understood by investigating only the properties of its Components
- In addition to "physical components", the Electric System consists of several non-physical components such as:
 - Government,
 - Academia,
 - Industry,
 - Accreditation Agencies
 - Professional Organizations, and
 - Local and International Communities,
- Interactions between the System's Components and the System and its surrounding including the experimenters need to be studied

Toward Systems Approach Solution

- Closer collaboration between Government, University, and Industry needs to be practiced. Research and Educational Centers and Institutes need to be established
- Universities need to value Teaching, Research, and Engineering Practice of the faculty and recognize the faculty's achievement in each of the categories.
- Universities need to hire some faculty who have industrial experience and do not expect these faculty to conduct extensive research.
- Universities need to hire some faculty who are purely Researchers or mainly Teachers

Toward Systems Approach Solution

- Team-Teaching courses that go beyond the traditional departmental and school boundaries
- Establishing Electrical Engineering Program Board of Advisors who have industry experience and are interested in producing Power Engineers
- Integrating year-long undergraduate research in curriculum in general and Power Systems Engineering projects in particular
- Responding to Accreditation Agencies by designing curriculum that has clear Objectives and Outcomes
- Training students who are Flexible, Independent, Creative, and Competent

Toward Systems Approach Solution

- Using the European model in integrating Academic programs with Industry goals (Norway, Sweden, UK)
- Establishing internship and co-op programs and involving industry representatives in Ph.D. dissertation committees
- Providing options for pursuing entreprenuership, management, medicine, and/or law in EE undergraduate curriculum
- Increasing industry and government dollar investment in power system engineering Research, Development, and Application

Concluding Remarks

- Power Systems Blackouts, Energy, Environment, and Economic Crises are *positive EXTERNAL events* that can be used to REVIVE Power System Engineering Education
- Although External Events are necessary conditions, they are not Sufficient for the Change. The Sufficient conditions are *Internal*.
- Academia, Industry, and Government need to work together towards achieving the Objective of the WHOLE