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Abstract— Integration methods are analyzed per-
mitting the efficient calculation of electromagnetic and
electromechanical transients in power systems using
the same network model. The described methods ap-
ply commonly used approximations only by increas-
ing integration step size. They are valid for balanced
and unbalanced network conditions. An example cov-
ering a wide range of applications demonstrates the
efficiency of the implemented algorithm,

I. INTRODUCTION

Transients in power systems are characterized by eigen-
values which are in different order of magnitude. At least
two groups of eigenvalues can be identified:

» Large eigenvalues, electromagnetic transients.
e Small eigenvaiues, electromechanical transients.

For each group of transients, different approximations can
be applied. Some programs offer the possibility to switch
between a complete dynamic network representation for
electromagnetic transients and a steady state network
representation for electromechanical transients.

Particularly under unbalanced network conditions, this
sudden change of the network model causes a parasitic
excitation of the whole system.

In this paper, integration methods are presented which
can be used for the whole range of transients in power
systems using only one network model.

By increasing integration step size, the network model
transits smoothly from a dynamic representation appro-
priate for electromagnetic transients to a representation
describing the steady network state correctly.

Stability and precision of these integration methods and
the control of integration step size will be analyzed. An
example visualizes how the presented methods work in
DIgSILENT !, a standard program for power system anal-
ysis.

Because of the increasing importance of FACTS and
other nonlinear devices, the described algorithm for the
linear part of the electrical grid has to be seen in com-
bination with a multiple step size algorithm employing
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multiple time scale properties in nonlinear parts of the
electrical network.

II. MuLTIPLE TIME SCALE SYSTEMS

The eigenvalues of multiple time scale systems are in
different order of magnitude. State variables should be
chosen in such a manner that a big number of them is not
influenced by large eigenvalues,

In this paper, the electrical power system is deseribed
by a two time scale system. All state variables related
to the electrical grid, like line currents, transformer cur-
rents, voltages across capacitances and also stator cur-
rents of electrical machines belong to the subsystemn with
large eigenvalues. These state variables and the according
equations will therefore be called fust subsystem.

All mechanical variables and state variables related to
the rotor of electrical machines are only weakly influenced
by large eigenvalues and are therefore assigned to the slow
subsystem.

A. Multiple Time Scale System of Second Order

In order to derive some fundamental properties of mul-
tiple time scale systems, a multiple time scale system of
second order is analyzed in this section. Consider the fol-
lowing set of linear differential equations with constant

coefficients:
Tsis) — ail;  diz g (l)
Tray a1 Q2] \Tf

With T, > Ty and all coefficients ai; being of the same
order of magnitude, (1) is a multiple time scale system.

The relation T; >> T can be expressed by introducing
the singular perturbation factor ¢ [1] and writing Ty = T
with € < 1.

B. Singular Perturbation Analysis

Approximate values for A; and A2 can be obtained by
transforming the set of differential equations (1) in dif-
ferent time scales and analyzing fast and slow transient
separately (see Fig.1).

The time transformation ¢ = ef zooms in time scale and
is therefore appropriate for analyzing the fast transient.
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Fig. 1. State variables in different time scales.
In the new time scale, (1) can be expressed by:
TS% = ea11%¥s +ea13zy
()

dz
ETS—,'.f = E021%s + €Q22Tf
dt
With € « 1, equation (2) can be approximated for small
time scale analysis:

d;s =0
dz (3)

Tsd—; = a1 &s + agely

The corresponding eigenvalue is:

:\1 agoo asz
A = — = = — 4
YT e T T, Ty )
For analyzing the slow subsystem, time scale has to be
zoomed out by ¢ = /e.

Transforming (1) into the large time scale leads to:

dr
Tr—= = an12s + 01275
dt
(5)
d.’Bf
ET_f—.. = a91Ts + Aoz
di
for £ —+ 0, the large time scale approximation is ob-
tained with:

0= anz: + Qo2 f (6)

Hence, the eigenvalue of the slow subsystem is:

¥ Q11022 — Q21092
o =eglg = 122 2% (7)
agsaTy

C. Time Dependent Coefficient Matriz

Approximation (6) is only valid if the system-matrix is
linear and time independent.

Only balanced networks can be described by such a type
of system matrix. In unbalanced network states, coupling
elements between fast and small subsystem are always
sinusoidal functions related to machine rotation. Steady
state of x is therefore also sinusoidal. With

co -
T fateady (f) = Z: i.i'c:ej(w“;~

k=—
dx °°o° w ®)
f:!end Wi i i
"‘—..y = —X e""”" <
dt k;mj g °F

the left side of the second equation in (5) approximates
only zero for frequencies which are low with respect to
1/Ty.

Therefore, in case of unbalanced networks, large time
scale approximation has to be modified in the following
way:

ﬂ-:.f &= ifs!:aiy (9)
ITI. NUMERICAL SOLUTION

In order to digitally simulate a continuous time systemn,
it has to be transformed into a discrete time system. This
can be done by replacing each integrator by a discrete time
function, oftenly called numerical integration method. All
variables are then analyzed at discrete points ¢ + kh (k:
integer value, A: integration step size).

In small time scale analysis, when transients of the
fast subsystem are of interest, the numerical integration
method must map the eigenvalues of the original contin-
uous time system closely to the eigenvalues of the derived
discrete time system. Here, an efficient way to simulate
multiple time scale systems is the use of an individual
integration step size h in each subsystem.

In addition, the simulation algorithm should be de-
signed in such a manmner that it profits by the multiple
time scale approximations described in the previous sec-
tion.

Fig. 2 demonstrates the principles of a multirate al-
gorithm for a two time scale system using two different
integration step sizes hy and h; for the fast and the slow
subsystem respectively. A detailed analysis of a multirate
algorithm can be found in [2].

After fast transients have faded away, large time scale
approximations can be applied. Consequently, only the
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Fig. 2. Multiple step size algorithm.

steady state behavior of the original continuous time sys-
tem has to be represented correctly by the derived discrete
time system.

IV. LARGE TIME SCALE ANALYSIS OF FAST
SUBSYSTEM

In parts of the network which are free of harmonics in
steady state, computation time can drastically be reduced
if an integration method is used which permits to increase
the integration step size hy, ideally up to hy = ks, when
fast transients have decayed. '

Those integration methods must satisfy the following
conditions:

o Correct representation of fast transients for small in-
tegration step sizes.

» Frequency response at all occurring steady state fre-
quencies is exact, even for large integration step sizes.

o A-stability, because integration step size will be much
higher than time-constants of the fast subsystem.

Only methods up to second order can be A-stable. Hence,
it is sufficient to consider these methods in this paper.
Further, single step methods are focused because they
can much easier be incorporated in an adaptive step size
algorithm as required here.

A general single step integration method can be de-
scribed by:

x(t + h) = z(t) + a1 &(t) + co2(t + h) (10)

The factors ¢; and ¢; depend on A.

Equation (10) corresponds to the following mapping be-
tween complex frequencies of the continuous time system
pe and of the discrete time system p:

(11)

Using z = eP* the following expression can be obtained
out of {11):

z—1

oz + o (12)

pe(z) =

Trapezoidal rule is obtained with ¢; = ¢; = % Using
€1 = ¢g in (11) %, the imaginary axis p = jw of the p plane
is entirely mapped to the imaginary axis p, = jw, of the
D¢ plane.

Tig. 3 shows that the trapezoidal rule is exact around
w = 0 and that its error grows for rising frequencies. The
error depends further on integration step size h: The
larger h, the faster the error grows for rising frequen-
cies. Bandwidth of analyzed signals can therefore be much
larger in case of a small integration step size h.

Trapezoidal rule is well suited for analyzing transients
of the fast subsystem with small step sizes hy, but it only
complies with large time scale approximations for large hy
if the electrical network is balanced and if it is deseribed
in a rotating reference frame.

A. abe-Phase Domain

In absence of transients, state variables of the fast sub-
system are of the type:

zz(t) = a(t) cos(wnt) + b(t) sin(wnt)

The course of a(t) and b(t) depends on transients in the
slow subsystem. The spectrum X ;(w) of () has band-
pass characteristic with network frequency w, as central
frequency and with a narrow bandwidth related to slow
subsystem eigenvalues.

Therefore, trapezoidal rule must be modified in such a
manner that the error is minimal around w = w,,. It can
easily be verified that this can be obtained using:

tan (wn2)
Wn

Cl =Cp = (13)
Fig. 3 shows that precision of this modified trapezoidal
rule does not depend any more on absolute signal fre-
quency but only on signal bandwidth around w = w,,.
Another convenient property of this modified trape-
zoidal rule can be shown using tanz = z for |z| < 1:

h wnh
01"—"6235 ""2—<<1

Hence, the modified trapezoidal rule can, together with
small h, also be used for analyzing transients of the fast
subsystem.

(14)

B. Rotating Reference Frame

According to large time scale approximations, complex
space phasors of fast state variables z,(t) described in a

2this is even vaiid for c; = ¢ in case of complex integration
methods
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Fig. 3. Integration methods in frequency domain

rotating reference frame are of the following type [4], [5]:
z(t) = a(t) + h()e ™72

Ag before, a(t) and b(t) are related to transients of the
slow subsystem °.

In this case, an integration method must be found
which is exact around w = 0 and around w = —2uw,,.
The following equations for ¢; and ¢; accomplish with

this condition (see Fig. 3):

h 1

Regarding (11) and using ¢; and g, according to (15), it
can easily be verified that this integration method has fix-
points at p = p, = 0 and p = p. = —2jw,, independently
of h.

Like the modified trapezoidal rule (14), this complex
method approximates trapezoidal rule for small integra-
tion step sizes b and is therefore suited for analyzing fast
transients, too.

Zero sequence components are of the same type as state
variables in abe-phase coordinates. Consequently, they
can be treated by (13).

The two described methods are appropriate for ana-
lyzing the complete system behavior including fast tran-
sients. When fast transients are decaying, integration step
gize can be increased without changing the integration
method or the network model. The transition from small
to large time scale can therefore be made smoothly with-
out any parasitic excitation. Because ¢; and ¢, are con-
stant for constant h, the described integration methods
can easily be incorporated in a simulation algorithmn of
the Dommel type [3].

(15)

3in balanced networks: b(f) =0

It is important to mention that both methods can be
used for balanced and unbalanced network states.

C. A-Staebility

Only A-stable methods are appropriate for large time
scale analysis of the fast subsystem. A-stability can easily
be verified by describing the integration methods as a
mapping of complex frequencies like (12).

An integration method is then A-stable if, for any value
of k, the left p-half-plane is mapped into the unit-circle
of the z-plane.

According to (12) each pole pg of the continuous time
systemn is mapped to a pole zy of the corresponding dis-
crete time system:

e = 1+ mogy
0~ 1 —pocy

In order to be A-stable, a single step integration method
must accomplish with:

(16)

1+ pog

<1
1 —poesy

for Re(po) < 0 {17)

Using pp = @p + jwo and considering ¢, = ¢} with ¢, =
¢r + jei, condition (17) corresponds to:

(1 — ooer — woes)? + (woer — ope:)® —
(14 gocr — woei)? = (woey + 0oci)? > 0
for g9 <0

This condition can further be simplified to:

—4dgge, > 0 forop <0 (18)

Condition {18) holds for ¢, > 0. The modified trapezoidal
rule according to (13) is therefore stable if A lies in the
following ranges (with ¢, = ) = ¢g, ¢; = 0):

wng € (k':r,kﬂ'+ g) =

ve (0 () %)

Because these stability ranges are independent of system
eigenvalues, the modified trapezoidal rule can be used for
integrating state variables of the fast subsystem with large
integration step sizes.

For k = 0, equation (19) corresponds to Nyquists sam-
pling theorem for f,. But stability ranges can also be
found for & > 0. Theses cases, in which state variables
are ’subsampled’ will be analyzed in section V.

With (18), the complex integration method according
to (15) is A-stable because ¢, = h/2 > 0.

In unbalanced network states, there exists usually a
zero sequence compounent which has to be treated accord-
ing to (13). Hence, even if the network is described in a

(k integer) (19)
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rotating reference frame, h has to be chosen according to
(19).

V. CONTROL OF INTEGRATION STEP SIZE

Normally, integration step size is controlled by consid-
ering limits for the local truncation error.

No easy formula for estimating the local truncation er-
ror could be found for the described integration meth-
ods. Therefore, predictor-corrector schemes have been
used for error estimation: Using an explicit predictor for-
mula which makes the same considerations concerning sig-
nal waveforms like the corresponding implicit integration
method, the local truncation error can be estimated and
step size can be adjusted accordingly.

In addition, some natural limits for 4 are given by (19).

A. Nyquists Sampling Theorem for Bandpass Signals

Nyquists sampling theorem for general signals would
require the following relation between the integration step
size hy and the maximum signal frequency foaq:

1
hy > ——— 20
f 2_fma_;; ( )
But knowing that signals have bandpass character with
bandwidth fp and central frequency f,, the samphng the-
orem can be reformulated:

1

hf > 7n

In large time scale analysis, fg of fast subsystem state

variables only depends on eigenvalues of the slow subsys-

tem. Therefore, and because (21) is independent of f,,

the maximum possible value of by also depends only on
slow subsystem eigenvalues.

(21)

B. Influence on Global System Stability

Upper limits for iy can only be given by regarding the
global system behavior, including mechanical equations:
Considering that the central frequency of fast subsys-
tem state variables is directly related to generator speed
which is also state variable, the global system behavior
must be described by a set of nonlinear differential equa-
tions which also takes mechanical equations into account:
=) (22)
Equation (22) is built according to large time scale ap-
proximations, therefore, fast subsystem equations are
only represented by their steady state behavior.
By linearizing (22), local stability of the global system
can be analyzed. Supposing that the state variable z,
corresponds to the speed of a generator to which central

frequency of fast subsystem state variables is directly re-
lated {wpzn = w,), the according components of the linear
system matrix A, are:
8g;

Qin, = i (mn
Considering the steady state behavior of the fast subsys-
tem discretized by one of the described integration meth-
ods, together with the original, continuous time slow sub-
system, the elements a;,,, of the according system matrix
A4 can be obtained as follows:

O,

e

(xn =1)

Therefore, the derivative of the numerical integrator at
W = wy, in case of an abc-phase description, or at w =0,
to which z, = 1 is related in case of a rotating reference
frame, is of great interest. Using the mapping according
to (11) the derivative can be calculated:

Qing —

% — pePh &1 T o

23
dp (gpePh +Q1)2 #)

Applied to the modified trapezoidal rule (13) this expres-
sion has to be analyzed at p = jw,:

_ wph
"~ sin (wah)

Op.
dp |,

(24)

Therefore, only for w,h <« 1, global system Stability is
not influenced. At least, A should not exceed h = f

Evaluating (23) for the complex method according to
(15) it can easily be shown that

Jp.

=1
ap Ip=0

holds.

Here, the low frequency component which is related
to positive sequence is not subsampled if h; is chosen
according to (21). Only components related to negative
and zero sequence components are subsampled but their
influence on global system stability can be neglected.

VI. EXAMPLE

A typical two-machine problem has been chosen in or-
der to test the described methods (see Fig. 5). Syn-
chronous machines have been modeled according to Park’s
equations including voltage regulators.

The line model is a simple [-element.

In order to demonstrate the performance of the pre-
sented methods, the network is unbalanced, even under
normal operation conditions.

At t = 0, a single phase to ground fault is introduced
in phase a at bus b3 which is extended to a double phase
to ground fault in phases a and b 30ms later.
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Fig. 4. Simulation results

Fig. 5. Single line graphic diagram of test network

The duration of the short circuit is about 300ms.

Fig. 4 shows simulation plots as they are produced
by the simulation algorithm implemented in DIgSILENT
without any post-treatment except for linear interpola-
tion.

When integration step size is enlarged, phase currents
don’t seem to be sinusoidal any more. But this is only
due to linear interpolation because all samples have still
correct values as a comparison to the corresponding resuit
of a standard EMT-simulation with 10us integration step
size proves (see Fig. 4).

The frequency caused by negative sequence components
seems to change when integration step size digrd exceeds
20ms = 1/f,. But its amplitude and phase is still correct
which shows that subsampling can be applied here.

VII. CONCLUSIONS

Linear, single step integration methods have been pre-
sented which comply with large time scale approximations
for large integration step sizes h even in case of unbalanced

electrical networks.

For small integration step sizes h, the described meth-
ods approximate trapezoidal rule and are therefore appro-
priate for calculating fast transients, too.

Using a rotating reference frame, only time constants
of the slow subsystem limit integration step size after fast
transients have decayed.

If the network is described in abc-phase coordinates,
subsampling can lead to global system instability and can
therefore only be used in case of one-machine problems.

In regions where nonlinear network elements produce
considerable harmonics, the only way to profit by the mul-
tiple time scale character of electrical power systems is the

" use of standard multiple step size algorithms.
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