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Abstract - The objective of the paper is a presentation of a
new approach in dynamic power system simulation. The
time constant method (TCM) combines dynamic modeling
with steady state analysis methods. Contrary to the EMTP
solution system equations are transformed within the
continuous time domain into a suitable form for simuiation.
So the TCM is not restricted to a certain numerical
integration algorithm. The effort in the node wvoltage
calculation is reduced, because the network branches are
modeled not only by admittances but also by impedances.
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I. INTRODUCTION

An electrical power network is a dynamic continuous time
system, described by differential and algebraic equations. For
simulation these equations have to be converted into a
suitable form, which allows a solution by numerical
integration. The standard approach for this procedure is the
state variable method, known from system theory. But the
automatic generation of linearly independent differential
equations is difficult to realize.

Therefore, the simulation of transients in electrical power
systems is usually carried out by the difference admittance
method {1], which is applied in well known programs like
EMTP [2] and NETOMAC [3]. The differential equations of
the network are transformed by means of the trapezoidal rule
into difference equations. In the discrete time domain the
system equations can be handled easier than in the original
continmous time domain, All node voltages become
calculable and all branches of the network can be
independently integrated,

The difference admittance method, also called EMTP-
method [4], produces many system variables, which have no
physical meaning in the power systems. For that reason the
signal flow of the continuous time network is often difficult
to understand. This disadvantage can be avoided by means of
the time constant method (TCM). The TCM imitates the

EMTP method, but works in the continuous time domain [5,
6]. The differential equations of the network are converted
into a suitable form for simulation without being linearly
independent. In the continuous time domain all system
variables can be physically interpreted. This paper presents
theoretically the TCM, which is an alternative to the welt

known EMTP-method in power systems dynamics
simulation.

I1. BASICS OF THE TCM
A, Basic idea

The basic philosophy of the time constant method (TCM) is
explained by means of a simple electrical network with two
nodes (Fig. 1a). For dynamic simulation all RL-elements
have the same time constant Tj, (Fig. 1b):

Lia _ Ly
==L = 20 - 1
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The variable Ty can be provided with any value greater than
zero 3, 6]:

0<T<w @

In Fig. Ib additional voltage source “;2 and uy, are
introduced into the network. These sources describe the
voltage drops across the resistances R;z and R;o , which
are necessary to meet the correct system parameters;

Rz =Ry R} =Ry, - % &)
R20 =Ry0—R3 =Ry -%)Q' “®
uj2 =Ry ip; 5
uz0 = Rag ing ©

Due to their same time constants the RL-elements of Fig. Ib
form a frequency independent voltage divider. Therefore, the
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input voltages of the RL-circuits u), and ud, can be
described as a function of the known node voltage u; and the
auxiliary voltages uj, and uy,, depending on the reactor
currents (see (5) and (6)):

[ufz] 1 |l (111 ~up - u;e) N
udo] Liz+Lao Ly (u1 —ujp- u;u)

Due to (7) the RLcircuits can be integrated independently of
each other:
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The equations (7) and (8) describe together with (5) and (6)
the TCM-simulated network. The first order circuit of
Fig. 1a is represented by a second order system with the
eigenvalues

A =—~{Ryz +Raq) / (L12 +Lag) )]
?\.2 = —].ITO

(10)
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Fig. 1: Simple RL-network
a) circuit diagram

b) circuit diagram for TCM-calculation

The variable A; is corresponding to the correct system
eigenvalue, while variable A, can be interpreted as a
caiculation variable, which does not really exist in the
network. But the value of A, influences the stability of the
numerical integration. Therefore, a good choice of the time
constant Ty seems to be Ty — <.

B. Structure of system equations

In the folléwing, for all RL-elements a time constant Tg = e
is assumed. Then in Fig. 1b the resistors R}, and Rgo are

eliminated (R?z =Rgo=0) and the auxiliary voitage

sources are determined by

an
(12)
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Under these conditions the network equations are given by

[6]:

[iIHLIé i} ],[“l]{-ﬁ% 0 ]_[Uzz:l a3
0| |-Lyz Lig+Lsp] 2] | Lip -L50] [ugg

or
(14)

i differentiated node current vector
u, node voltage vector

u* auxiliary voltage vector

L; matrix of inverse inductances

auxiliary matrix of inverse inductances

The matrices L; and L; can be determined in a systematical

way using the knowledge of steady state network equations
for constructing, The rules for building up the matrix L; are
identical with the rules for forming the nodal admittance
matrix, when replacing admittances by inverse inductances:

L =KL K"
i =KLy

(15)

L (16)

KT bus incidence matrix
Ly branch inductances matrix
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In the network of Fig. 1b the matrices KT and Ly, are given
by

Lis 0}
L. = (17)
=bh l: 0 L20
K —[0 1} (18)

Out of (13) the unknown node voltage 1, can be determined:

_ - -1 - _ 1 - E
up = (Ll% “"Lz}]) '(Llé uy - L3 ugp +L36 Uzo) (19)

In the general case, the voltages in (19) are vectors and the
inductances are matrices.

With the node voltages also the branch voltages are
calculable:

T
u, =K' n, (20)

Ma _ 1 -1 (1]
U4qq - 01 . Uy @D

w, branch voltage vector

or

Now, the RL-circuits are dynamically decoupled, because
their input voltages are known. Fig. 2 shows the structure of
the TCM-simulated system. The voltages of the RL-branches
are calculated by a static network SN1. This block depends
on network topology and system parameters and can simply
be determined by matrix operations, known from steady state
network analysis. The procedures, which have been carried
out, are very similar to those of the EMTP-method [1).

* Ry
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u | sNt|_ Y2 1 RZ
o 912+SL12
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— o -
R20+SL20
/
Y0 Ryg

Fig. 2: TCM-simulated system of Fig. 1 (T = o)

HI. CHARACTERISTICS OF THE TCM

A. Linear RLC-branches

An electrical power system can be described by an equivalent
circuit with ohmic resistors, capacitors, inductances, voltage
and current sources. For simulation the RLC-network is
decomposed into clementary branches of zero and first order.

In Table 1 the different types of elementary branches are
listed,

Using the TCM only the L- and series RL-circuits are
represented by admittances. An  admittance model s
characterized by an input voltage and an output current, The
other circuits (Table 1) use an impedance representation with
an input current and an output voltage [6].

branch model

L
o_rwﬁ_o 1
Y=—
sL

R L

o—f }——0

Y = 1
R +sL

]
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R +sL

¢
= z=1
sC
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g _1+sRC
sC

R
1+sRC

A
— Z=R

Table 1: Modeling of elementary branches
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Fig. 3 shows the structure of a TCM-simulated linear RLC-
netwerk. The network is decomposed into the elementary
branches, which are modeled by their transfer functions.
According to the system topology the branches are connected
via two static nets SN1 and SN2. The block SN1 was already
discussed in section IL It calculates the input voltages uy,
and w,y of the admittance branches depending on

- the known network voltages u,
- the auxiliary voltages u* and
- the output voltages uy,3 to uy,7 of the impedance branches.

The static network SN2 consists of an incidence matrix and
determines the input currents ip3 to iy of all impedance
elements. These variables depend on

- -the output current i,; and iy, of the admittance branches
and
- the known current sources j in the network,

The structure in Fig. 3 is characterized by a clear separation
between a static part, which defines the topology of the
power sysiem, and a dvnamic part, describing the transient
behavior of the branches.

B. Branches with distributed parameters

In transient power system simulation lines are often
described by distributed parameters [1]. Consider a lossless

Upr —— b1
SN1 = — [+=|SN2
Y2 T ] b2
Re+sl | |7
*
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u _ ]
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s
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Y
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Fig. 3: TCM-simulated linear RLC-network (Ty =)

line with an inductance L’ and a capacitance C’ per length 1
(Fig. 4a). The dynamic behavior of the svstem is represented
by two coupled difference equations:

iﬁt):%u.(t)——zl—uz (t-7-iz {t—) (22)

ia(t) = EL u,(t) -zi w (t-t)~i) (t-1) (23)
with

=1 JL'C, Z,=JLC (24)

Fig. 4b shows the dvnamic structure of the line with time
delay blocks. According to (22) and (23) the terminal
voltages u = [y uer are the input variables and the terminal
currents i = [i; i;]1* are the outpul variables of the system. In
TCM-simulation the lossless line behaves like a coupled
admittance element (type YY in Table 2). If other terminal
variables are defined as input variables, a distributed
parameter line can also behave as an impedance element
(tvpe ZZ) or a combined admittance/impedance element
(tvypes YZ and ZY in Table 2). The correct model is
determined by the electrical environment. Voltage sources
and impedance elements at the terminals cause an

. admittance behavior, while current sources and admittance

elements are responsible for an impedance behavior (Table
2).
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Fig. 4: Lossless line with distributed parameters
a) symbol
b) dynamic model with u = [u uz]T as input

variables
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C. Mutual couplings

In multiphase networks mutual couplings between the
branches have to be considered. Fig. 5 shows a lumped
parameter modet of a symmetrical three phase line with
neglected capacitors, Due to the mutval inductances M the
matrix Ly, of branch inductances becomes nondiagonal.

LMM
L,=|M L M 25)
MML

Therefore, an inversion of Ly, (see (15) and (16)) is more
difficult to carry out. But the operation principles of the
TCM are not changed.

D. Nonlinearities

A TCM-simulation is also possible with nonlinear network
parameters. But the nonlinear parameters have to be
described in a suitable form, to avoid algebraic loops. In the
following we consider the branches of Table 1 and assume
nenlinear resistors and inductances. Usually, algebraic loops

type model example
u ] 1
el IR
2H_ =2
YY
u it 2
] - je— 4 |
u.?'ﬂ—' hoot— 1'2
77 o -
U1__- /7
Dai i &
YZ
u?-l— . [ if [ ’-1 o__oj
UZ - ;2 Uz; —1
zY —

Table 2;: TCM-simulation of lossless lines

do not occur, if the parameters R and L are defined as
functions of the resistor and inductance current i

R{), L@®

However, one exception exist. In a parallel RC-circuit (Table
1) the parameter R must be described in dependence on the
resistor voltage u:

R (u)

Nonlinear inductances in admittance branches cause time
varying parameters in the matrix Ly, According to (15) and

(16) the matrices L; and L; have to be calculated new at

every time step. Therefore, the definition of the static
network SN1 (Fig. 3) requires more computation time,

There is also another possibility to take nonlinear branches
into consideration. They can be coupled with the linear net
by means of iterative procedures.

E. Switching operations

Circuit breakers in power systems can simply be represented
by ideal switches [1]. A switching operation changes the
topology of the power network. Then the static program part
(blocks SN1 and SN2 in Fig. 3) must be adapted to the new
conditions. The dynamic program part is not influenced by
switching operations like in the EMTP-method.

In smail RLC-networks with many switches (e.g. power
¢lectronic circuits} we can also use another strategy [5]. In
this case, the static nets SN1 and SN2 are described by a
constant structure but time varying coefficients of the
internal matrices. The coefficients depend on a switching
vector v, which is introduced as an additional input variable
into the system. The components of this vector have to be
determined a priori for all relevant switching states of the
power system. In larger networks this concept cannot be
recommended, because the dimension of the vector v
becomes too large.

' Fig. 5. Model of a three phase line with lumped parameters
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F. Comparisation with the EMTP-method

The TCM- and EMTP-method are based on the same
philosophy. A dynamic decoupling of the power network is
achieved by the calculation of ail node voltages. The TCM
carries out this procedure in the continnous time domain. So.
the resuit is independent of a special integration algorithm,
The dynamic structure of the system equations can be
modeled by a block diagram, which gives a good insight into
the signal flow of the power system.

The EMTP-method is working in the discrete time domain
using a fixed numerical integration algorithm (trapezoidal
rule). Many system variables have no physical meaning.

Therefore, a continuous time interpretation of the network
equations is probiematic.

The main advantage of the TCM is the reduced effort in
node voltage calculation. Consider the simple 4 node
network of Fig. 6. Using the EMTP-method ali branches are
modeled by admittances. So, 3 node voltages (u;. u3 and uy)
must be calculated by inverting a (3 x 3)-matrix. From the
TCM-poeint of view all node voltages are known due to the
impedance branches (capacitors),

For numerical integration the TCM-converted continuous
time network equations have to be transformed into the
discrete time domain. This procedure is not necessary in the
EMTP-method, because the system equations are already in
the discrete ime domain. A discretization of the TCM model
consurnes additional computation time [6] and compensates
the advantages in the node voltage calculation. From the
present point of view TCM and EMTP-method need the
same effort in power system simulation,

IV. CONCLUSION

The time constant method (TCM) is a new approach for
transforming differential equations of an electrical power
network into a suitable form of simulation. It works in the
continuous time domain and is not restricted to a certain
numerical integration algorithm. The network branches are
modeled by admittances and impedances. All admittance
clements have the same time constant T, (preferably
Tg =+=). Due to the impedance branches the effort in node
voltage calculation is reduced. With the knowledge of all
node voltages in the network a dynamic systern decoupling
can be achieved. The TCM is an alternative to the EMTP-
method, which is used in the well known program packages
as EMTP and NETOMAC.

Fig. 6: Electrical network with 4 nodes
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