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Abstract - We have already proposed a transformer
model for transfer voltage, which consists of the EMTP
TRANSFORMER model simulating the electromagnetic
transfer component and some capacitances simulating
electrostatic transfer component. In the subsequent discussion,
however, we found it important to consider the frequency
dependence of leakage inductance and core loss. This paper
shows frequency dependence from tested results for many
transformers, and studies the validity of the new transformer
model by comparing the transformer model based on the
frequency dependence with the tested resulis. The model is
represented in the MODELS language deseription.
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I. Introduction

In the insulation design for power stations and
substations, it is necessary to study transfer voltage [1] which
transfers to the low voltage class through a transformer, in
addition to study the overvoltage in high voltage class. The
transfer voltage is an important factor for protection of the
lower voltage side equipment of the hydraulic power plant.
Transformer modeling was directly treated as one of circuit
analysis [2]. For transfer voltage study models shown in
[3L[4] or capacitance-model consisting of capacitance
between low voltage winding and ground and that between
high and low voltage winding, are widely applied for studying
the transfer voltage which includes Mz order high frequency
components, In many cases, however, the calculated results
by these models, do not agree with the measured result. An
idea of taking frequency dependency of transformer into
account was presented from earlier times. To present
frequency response of transformers, simple linear equivalent
circuit [5],(7], transfer function [6},[9], and state equations [8]
were used. As another kind of medeling rnethod, using modal
theory is unique approach [10){12]. These methods
mentioned above [5]-[12] seemns to be rather complex and may
not be general, because they are foeusing on internal winding
representation. In recent year, CIGRE has proposed simple
terminal type transfer model based on the TRANSFORMER
- model shown in [3],/4] and adding above-mentioned
capacitance {o this medel.  This type of model is
comparatively simple and clear in its physical meaning of
electrostatic and clectromagnetic transfer components[13].

On the basis of the CIGRE's model, authors have
proposed a transfer voltage model for 3-phase/2-winding
transformer and its constant derived using the field measured
results, and reported that the analyzed results were found to be
comparative with the measured results [14]. Afterwards we
found that the discrepancy observed between measured and
analyzed result may be due to non-consideration of frequency

dependence of transformer. To obtain the analyzed result
which are well-agreed with the measured result of the transfer
voltage, the frequency dependence must be taken into account
on the previously proposed model.

At the first stage in this paper, we compare the measured
results with the analyzed results obtained by the previously
proposed model for the transfer voltage when varied
capacitance is added to the low voltage side. As a result, we
make it clear that frequency dependence must be considered
together with leakage induclance and core loss in analyzing
transfer voltage using the previously proposed model.
Secondary, we represent the [requency dependence with
approximate curve assembled into MODELS [15] to propose a
new model. At the last part, we compare the analyzed results

with measured results,

II. Measured results of transfer voltage and analyzed
resulis of previously proposed model

A. Measurement condition

A measurement circuit to measure the voltage

. transferring into the low voltage side is shown in Fig.1. The

measurement conditions is as shown in Table 1. There are
three types of the input waveform. The various capacitances
are applied in the low voltage side to study the frequency
dependence of transfer voltage. Table 2 shows the
specifications for Y-A transformer of 4 types used to
measurement. -
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Fig.1. A measurement circuit to measure transfer voltage,

Table 1. Measurement conditions.

Input phase 1 phase (U)
Input voltage 100 v
Input waveform| 1.2/700us, 1.2/50ps, AC voltage(] - 450kHz)
Neutral Grounding / Ungrounding
Low voltage | Added capacitance: Ca(0, 1, 2, 3, 6, 10, 20,
side 30, 50, 100, 300, 500nF)
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Table 2. Specifications for Y-A transformer of 4 types. (3-phase/2-winding transformer)
Rated capacity. P 120MVA 45MVA 25MVA 10MVA
Rated voltage: Vyy/Vy, 275/34.9kV | 154/10.5kV | 64.5/6.9kV | 154/3.3kV
(Vy minimum tap) (247.5kV) | (150.5kV) (57.0k\) (140kV)
Rated frequency: f S50Hz. 50Hz 60Hz 50Hz

Leakage induclance; %17 15.56% 11.07% 17.36% 10.96%
Capacitance between high voltage winding and ground: Crye || 1720pF/phase | 2080pF/phase | 1300pF/phase | 1200pF/phase
Capacitance between low voltage winding and ground: Cy g |12320pF/phase | 4250pF/phase | 2700pF /phase | 2430pF/phase
Capacitance between high and low voltage winding: Cpy;,  [14020pF/phase | 2250pF/phase | 2300pF/phase | 1070pF/phase
Neutra] Grounding | Ungrounding ; Ungrounding | Ungrounding

Note;

Leakage inductance: %IZ is measurement value when minimum tap is used.

Capacitances: Cyg, CLG, Cnl, are measurement values,

B. Previously proposed model

As shown in Fig. 2, we have proposed a model based on
CIGRE's model. The model can simulate the electromagnetic
and electrostatic transfer components.,

Crw

C
w-l:,zLG

Li, La: high, low voltage leakage inductances
Rmag: core loss

Rj, Ry high, low voltage winding resistances

Nj, Nz: high, low voltage turns
Cpy: capacitance between high and low voltage winding
CHg: capacitance between high voltage winding and ground
Cpg: capacitance between low voltage winding and ground
Cn: capacitance between neutral and ground
Cy1.: capacitance between neutral and low voltage winding

Cyn, Cpp: capacitance between high, low voltage windings

Fig.2. Previously proposed model.

The parameter’s values of the previously proposed model
are derived using the values in Table 2. Lj and Ly can be
obtained by sharing %IZ of the transformer as shown in
equation (1).

2
P 100 2nf

Ly =Ly (NaI NpY?

Rinag can be easily calenlated with capacity and voltage [4],
hereby 12k is provided as the resistance value when
frequency of transfer voltage is about 10kHz. R and R can
be obtained by the measured result. But, those values can be
neglected as they are very small. CNy, is 2 half value of Cgyy,
by the winding location. Therefore, Cpqy, has to be varied as

83

* phase.

half as it was. CNG is a 2/3 times value of Cjjg. Cppy and
C1.L can be neglected as enough to small.

C. Comparison of measured and analyzed results

Fig.3 shows the measured and analyzed results in case of
applying parameter's values derived in the section B to the
previously proposed model on the 120MVA transformer,
Fig.3 (a) is an input voltage waveform of 1.2/700us (long tail),
and Fig.3 (b) is a transfer vollage waveform between u-v
In order to vary the frequency (1/Tm) of transfer
veltage, the added capacitance Ca of 100nF and 30nF are used.
As shown in Fig.3 (b), when Ca is comparatively large, the
analyzed result almost agree with the measured result. But if
frequency of transfer voltage is increased by means of
decreasing Ca, the peak values and perods of the analyzed
results disagree with the measured results. Then we have to
consider the frequency dependence included in winding and
core of the transformer on analysis with the previous model.
Therefore, it is necessary to compare the analyzed and the
measured results of transfer voltage for the cases of setting Ca
to several kinds of values.

In order to coincide the analysis with the measurement,
L] and L have been multiplied by corrected coefficient K and
Rmag has been adjusted. Fig.4 shows the comparison of the
measurement and the comected analysis. Fig.5 shows the
relation between K and measured frequency of transfer voltage
f and relation between Rmag and £ On analysis with the
previous moedel, K has to be decreased and Rmag has to be
increased as frequency of transfer voltage increases.

D. Frequency dependence of transfer voltage

In order to study frequency dependence of transfer
voltage, the amplitude of transfer voltage was measured when
Ca used were 3nF and 100nF and AC voltage of 1-450kHz
was inputted. Resonances occur above 10kHz. Resonant
frequencies are numerous if low voltage side capacitance is
smatil and the peak value at resonant frequency is larger if low
voltage side capacitance is large.

III. Transformer model account for frequency
- dependence

A. Approximate curves representing frequency
dependence

The approximate curves, representing the frequency-
dependent L1, Ly and Rmag,can be derived from the
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Fig.3. Comparison of measured results and analyzes results of previously proposed model.
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measured transfer voltages of 4 transformers when varied Ca
1s added.

As shown in Fig.7, low vollage leakage reactance Ly’
seen from high voltage side is represented by the following
equation (2).

@

By using equation (2), capacitance between high and low
voltage windings CHJ, and other capacitances, theoretical
period T¢ (period before correction) of transfer voltage, taking
no account of frequency dependence of transformer, is
represented by the equation (3).

T =21 Ly (Cyp +Coyp +Cra +Cp) 3)

Corrected coefficient K for L1, L2, as shown in equation (4),
can be expressed by the square of the ratio of the period Ty
obtained from equation (3), whereas Rmag can be derived
from caleulated result agreed well with measured result.

2
KalIn
I

) 2
Ly'==—1L
2= 342

@

In Fig.5, Rmag has been converted by the base capacity
45MVA and base voltage 154kV due to corrett the difference
of core volumes of each transformers. these relationships are
approximated by the equation (5).

K =—0.0992Ln( fIkHz])+ 1.0213
Rmag =7543. 2exp? 988/ (kitz]

Therefore, frequency-dependent L] and L3 can be corrected by
multiplying K by equation (1). Frequency-dependent Rmag
can be derived from converling the value of Rmag at
frequency of transfer voltage by the base capacity and voliage
mnversely.

As a result of above discussion, more accurate
transformer transfer voltage model applied in wide frequency
range can be made by representing from equation (1} to (5) in
MODELS.

B. Modeling

&)

A frequency-dependent transformer model for transfer
voltage study is shown in Fig.8. Since the frequency-
dependent Ly, L2 and Rmag cannot be represented directly in
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TRANSFORMER. model described in [3] and [4], these
elements are in outside of the TRANSFORMER model.

IV. Comparison of analyzed and measured results

Te verfy the adequacy of this proposed model, we
compared the results analyzed on the proposed model with
measured waveforms on 4 transformers when varied Ca is
added.  Anslyzed results agree with measured results
relatively well.  However, when the accuracy of the
approximate curves decreases, namely, measured K or Rmag
separate from the approximate curves, the error becomes
larger.

V. Conclusion

We have proposed a frequency-dependent transformer
mwodel for transfer voltage study. Results of the present paper
can be summarized as follows.

(1) We have measured the transfer voltages of transformers,
whose rated capacity and voltage are different from each
other, varying the value of fow voltage side capacitance.
As a result of comparing the measured waveformes with
the result analyzed on the model already proposed in {14],
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(a) 120MVA transformer.

for more accurate calculation, frequency-dependent
leakage inductance and core loss have to be considered.

{2) We have measured the frequency dependence of transfer
voltages. Resonances oceur above 10kHz.
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Fig.7. Low voltage leakage reactance seen
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Fig.9. Comparison between measured results and analyzed results used to new proposed model. (u-v phase transfer voltage)

Resonant frequencies are numerous if low voltage side
capacitance is small and the peak value at resonant
frequency is larger if low voltage side capacitance is large.
(3) A new transformer model, whose frequency dependence

" - are represented by approximate curves assembled into

MODELS, has been developed. The validity of this model
has been indicated by comparing the measured results
with analyzed results,

(4) When this proposed mode! is compared with the previous
model, it dose not need 1o repeat simulation for
determination of model parameters and it can be applied to
the various transformer.

Hereafter, we would like to continue accumulating the
measured data on the various transformer and investigating
high reliable transformer model for transfer voltage study.
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