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Abstraet - Difference equations are widely used
for analyzing power systems transients. Dif-
ference equations of power systems elements
are systematically derived using different ap-
proaches and then combined to a difference
equation system describing the complete elec-
trical power system. By reordering these equa-
tions, a discrete time state space formulation is
obtained. Hence, the complete theory of dis-
crete time systems can be applied.
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I. INTRODUCTION

Difference equations have been used for the analy-
sis of power systems transients since the late sixties
when Dommel introduced the so called difference con-
ductance method [1].

The greatest advantage of difference equations meth-
ods is the simplicity of the solution process: By con-
verting the continuous time equation of each branch el-
ement to a discrete time equation using e.g. the trape-
zoidal rule, each branch element can be described by
either a current or voltage difference equation. The
complete difference equation system can then be built
without the necessity of identifying a set of independent
state variables.

The difference conductance method is exclusively
based on a current representation for all branch ele-
ments. Hence, for building the complete difference con-
ductance system, the nodal voltage method, well known
from network theory, can be applied.

Also just by applying Kirchoffs current law, different
systems of difference equations can be built having not
only node voltages as unknowns but also branch cur-
rents. Power systems elements can here be described
either as current or voltage equations.

I1. ConTINUOUS TIME EQUATIONS OF POWER
SYsTEMS ELEMENTS

The continuous time equations of power systems el-
ements can either be described as differential or as in-
tegral equations. First, only single phase devices are
being analyzed. Later, the theory will be extended to
three phase configurations. The single phase descrip-
tion is valid for decoupled modal components of three
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phase systems as well.

For building a network equation system, the external
behavior of power systems elements is the primary in-
terest. The elements can be partitioned into inductive
or L-elements, capacitive or C-elements and resistive or
R-elements. The internal behavior is considered by us-
ing sources in the external equations. Sources can rep-
resent the influence of internal state variables or current
or voltage sources.

In this paper, only slow internal state variables like
rotor fluxes of machines or mechanical variables are
considered which can be evaluated using explicit in-
tegration formulas, and hence be treated as sources in
the external equations.

In case of fast internal state variables which have to
be solved by an implicit method as well, the following
equation systems have to be completed by these vari-
ables and their equations.

Table I shows the equations of single phase elements,
ordered by voltage- and current equations. The follow-
ing analogy between the equations of L- and C-elements
can be observed:

Voltage equations of L-elements and current equa-
tions of C-elements are differential equations whereas
current equations of L-elements and voltage equations
of C-elements are integral equations. Resistive elements
(index R) can be considered as a special case of L- or
C-elements (C or L =0).

The differential equations of table I are given in the
implicit state form. The general form of both, L- and
C- equations is:

() = F3(t) + Hz(t) (1)

For the transformation into an integral equation, (1) is
solved for z{t):

#(t) = —F 1 Hz(t) + F~'z(t) = Az(t) + Bz(t) (2)

Equation (2) is the explicit form of the differential equa-
tion. Integrating (2) leads to the integral equations of
table L.

The relationship between the coefficients of L- and C
elements is:

B = Lt Ap = —L7'R; = —B[(R;
Be=C"! Ac = —C"1G¢c = =BcGo
Gr = REI
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TABLE I Continuous time equations of power systems elements

Voltage Equation

Current Equation

wr(t) = Lip(t) + Rpip(t) + ugr(?)

uc(t) = [3 {Acuc(r) + Be lic(r) —igc(m)]} dr + Ue

ugr(t) = Rpir(t) + uer(t)

ir(8) = fo {Apig(r) + Br [un(r) — ugr(n)]} dr + I
io(t) = Cic(t) + Gue(t) + igc(t)
ir(t) = Grug(t) +igr(t)

TABLE II Coefficients of implicit multi-step methods

History Values A(k)

Method
Implicit Euler o~
Trapezoidal 325

Method acc. to [2]

—

A7 - Ar(erdt - 1) -

#Zk-1)
Q- 1k —1)+2(k-1)
(At-Q N 2(k— 1)+ 2(k—1)

III. DISCRETIZATION METHODS

Difference equations are obtained by discretizing con-
tinuous time equations. The discretization can be per-
formed by using either the differential or the integral
form of the original continuous time equation. Starting
from the differential equation, the operator d/dt has
to be approximated by a numerical differentiator. Per-
forming the discretization based on the integral equa-
tion, the integral f 2dt has to be approximated using a
numerical integrator.

For numerical integrators, explicit as well as implicit
approaches can be used. For the discretization with nu-
merical differentiators however, only implicit methods
can be applied.

Numerical differentiators are obtained by the follow-
ing general approach:

(k) = D{z(k),z(k - 1),...,2z{k —m),
2k—1),...,2(k—-n)} (3)

Numerical integrators are of the following form:

2(k) = I{z(k—-1),...,2(k — m),

2(k), ..., 2k —n)} (4)

Implicit, linear multi step methods are used very widely.
They can be written in the following form, either as
numerical differentiator or as numerical integrator:

#(k) = Qz(k) — Qh(k) (5)
z(k) = Q7 12(k) + h(k) (6)

Here, h(%) is the so called history value which com-
prises values of z and 2 already known at the moment
of interest £ = kAL,

Some numerical integration and differentiation meth-
ods, which are often used for the simulation of power
systems transients are shown in table IL

IV. DIFFERENCE EQUATIONS OF POWER SYSTEMS
ELEMENTS

Applying the numerical differentiator (5) to the im-
plicit differential equation (1) the following implicit dif-
ference equation is obtained:

z(k) = (H + FQ)z(k) — FOQ{K) (7)
Solving for z(k) leads to:
(k) = (H + FO) 7 la(k) + (H + FQ)~LFQA(k) (8)

Using a numerical integrator (6) for discretizing the ex-
plicit equation (2), an explicit difference equation re-
sults:

2(k) = —(A—- ) 'Bz(k) — (A—Q)7'QA(k)  (9)
Solving for the input variable z(t) leads to:
z(k) = ~B~YH(A — ) z(k) — B-10Qh(k) (10)
With:
(H+FQ)=-B1(4-Q)

Equation {7} is equivalent to (10) and equation (8) to
(9)-

The discrete time equations shown in table IIT can
be obiained accordingly. These equations have the fol-

=
—

Fig. 1. Equivalent voltage- and current source repre-
sentation
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TABLE III Discrete time equations of power systems elements

Voltage Equation

Current Equation

ur(k) =(Re + Lir(k) + 'U.q]_,(k) — LAy,

ir{k) -'=—(AL - Q)_IBL’U.L(FC) + (AL - Q)_lBLqu(k)

ug(k) =—(Ac ~ Q) Beic(k) + (Ac — Q)™ Boige (k)

—(Ag = V) Qho(k)
ug(k) =Rrir(k) -+ uqr(k)

ic

—(Ag — W1 QA (k)

(k) =(Gg + CQuc (k) +i,0(k) = CQAc(k)

ir(k) =G rur(k) +izr(k)

TABLE IV Parameter, source and history terms of L- and C-elements

zZ

Ug Up Y iq T:h
Lelm. Rp+L ug ~LQh,  Z* —Yrug —Yruer
C-elm. Ygl ~Zcige  —Zoiac Go +C0 g —Che

lowing common forms for all power systems elements:

ulk) = Zi(k) + ug(k) + un(k)
i(k) = Yulk) +i,(k) +in(k)

(11)
(12)
As all variables in these equations depend on the same
time index k, they can also be written without any time
index:

(13)
(14)

uw=Zi+u, +up
i=Yu+iq+ih

Obviously, current and voltage equations are equivalent
considering:

Y= Z_l iq = —Yuq 'i'h = —Yu,

Table IV shows all expressions for ¥ and Z and the
formulas for the history values i, and up.

The eguivalent circuits corresponding to equation
(13) and (14) respectively are shown in figure 1.

V. DIFFERENCE EQUATIONS OF THE ELECTRICAL
POWER SYSTEM

There are different possibilities for combining the dif-
ference equations of power systems elements to a differ-
ence equation system describing the complete electrical
network. Of particular interest are here methods which
are based on Kirchoffs current law. These methods al-
low to build the complete system in a straight forward
way without the necessity of analyzing the topology of
the network. The resulting system matrices of these
methods are sparse.

There are principally two different methods based on
Kirchoffs current law:

s The element current - nodal voltage (EC-NV) ap-
proach

» The pure nodal voltage (NV) approach

The well known difference conductance method of Dom-
mel [1] ist based on the NV-approach.

A combination between these two systems is the mod-
ified nodal voltage (MNV) approach [3] which is today
the most commonly used method in the field of elec-
tronic circuits [4].

For the following derivations, the current law is writ-
ten using the node-element-incidence matrix'

Kig=0 (15)

The complete topology is defined by the incidence ma-
trix K. It defines which element is connected to which
node. The current vector ¢z contains the terminal cur-
rents of all elements.

Node voltages and terminal voltages of power sys-
tems elements are related as follows:

ug = KTuy (16)

A. Element Current - Nodal Voltege System

As shown, power systems elements can either be
modelled by a current equation according to (14) or
by a voltage equation according to (13). Using matri-
ces and vectors, the voltage and current equations (Z-
and Y-equations) of all elements can be described as
follows:

(17)
(18)

Ziz — Uz = —Ugz — URZ
ty — Yuy =iy + ihy

lthe node-element incidence matrix corresponds to the node-
branch incidence matrix in network theory
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The topological equations (15) and (16} can be re-
ordered according to Z- and Y-models:

[K; Ky] [: ]

i (19)
] - X4

=0
=[xt @
Substituting 1z in (17) and uy in (18) by the nodal
voltages uy using (16) results, together with (19}, in
the EC-NV system:

Z 0 -KI7[iz —tigz —upz
0 E -YKJ|{iv|=|ty |+ ]| trr
K; Ky 0 uN {; 0
(21)

The system matrix of the EC-NV system is sparse and
the vector of unknowns is of the dimension ngo_yyv =
nn + ng (number of nodes plus number of elements).

B. Nodal Voltage System

The nodal voltage approach is based on a current
source representation for all power system elements ac-
cording to (14}

Hence, sustituting uy in (18) by the current law (15)
leads to:

ig —YKTuy =i, +ix (22)

Multiplying (22) by K and reordering the resulting ma-
trix equation leads to the well known nodal voltage sys-
tern:

KYKT uy + Ki, + Kip, = Kip =0 (23)
Y
Or:
YN‘UN = —K’r‘:q — K?:h (24)

The matrix Y is the node-conductance matrix and
can be built directly out of the network structure, anal-
ogously to the complex node-admittance matrix used
for steady state power systems analysis.

The node conductance matrix Y y is reflecting the
network topology. It is sparse and symmetrical, like
the node admittance matrix, a fact from which equation
solvers can highly benefit.

The dimension of ¥ 5 is nyy = ny (number of
nodes). Y v is therefore much smaller than the system
matrix of the EC-NV system.

But, as every element has to be modelled by a current
equivalent, (Y-equation), the node conductance matrix
can get badly conditioned in case of very small differ-
ence resistances Z as they can result fro C-elements
together with very small integration step sizes (see also
table IV).

C. Modified Nodal Voltage System

The modified nodal voltage approach combines the
advantages of the EC-NV approach and the pure NV
approach.

Analogously to the the pure nodal voltage approach,
uy of the current sources-equations {18) is substituted
by Kg;uN. Multiplying equation (18) by Ky results
in:

Kyiy - KyYK{uy = Kyigy + Kyiny (25)
YNy

Using (19) in the form:
Kziz+Kyity =0

the element currents of Y-elements ty can be elimi-
nated from the vector of unknowns:

Kziz + Y yvuy = —Kyiqy — Kytyy (26)

The voltage source equation (19) together with (26} are
building the modified nodal voltage (MNV) system:

[z KTl [iz] _ 4| Uz
Kz Yuyy|jun| |-Kyiy —Kyiny

(27)
The dimension of the system matrix is here npryy =
nyz +ny (number of Z-elements plus number of nodes).
The MNV-system is much smaller than the EC-NV sys-
tem, but it can still represent voltage equivalents (Z-
equations) as well. Therefore, numerical problems in
case of very small integration step sizes can be avoided.
The flexibility in modelling power systems elements
either by current- or by voltage equations can also be
used for transforming the implicit equation system to
a state space form, as shown in the next section.

D. Ezplicit State Space Representation

The representation of difference equations with his-
tory values on the right side is valid for all discretiza-
tion methods. This is not the case if the system is
transformed into an explicit state space form.

The implicit formulation according to the previous
sections is very efficient for a recursive solution of the
difference equation system. The explicit state space
representation however can be used for analyzing the
system in a more analytical way. Analogously to a con-
tinuous time state space representation, the discrete
time systemn allows to analyze stability properties by
calculating eigenvalues and eigenvectors. Also charac-
teristic frequencies can directly be found by analyzing
the calculated eigenvalues of the discrete time system
(see e.g. [5])-

In real time applications, in which a linear electrical
grid can be assumed?, the explicit formulation allows
a direct solution of the system allowing to ’skip’ some
time steps without increasing the discretization error
which leads to very fast simulation algorithms.

The difficulty of transforming the implicit formula-
tion according to (27) into an explicit state space sys-
tem depends highly on the decision which element is

1

R "
the assumption z; = z,

is also necessary
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TABLE V Single phase and three phase systems

single phase

three phase

abce-co-ordinates

modal co-ordinates

Variable/vectors g g= [ga /1) gc]T gy = [91 g2 93]T
[Maa Mab Ma.c‘l ’VMI 0 0 ‘l

Parameter /matrices M M= |My, My My My=]0 M 0
Mca Mcb Mcc 0 0 MS

modelled as a voltage (Z} and which element as a cur-
rent {Y) equation.

If every L-element is modelled as voltage equivalent
(Z-equation) and every C-element as current equiva-
lent (Y-equation) the transformation can be performed
without any difficulties.

Modelling power systems elements by this way, the
vector of unknowns comprises all inductive currents and
all node voltages, hence the storage variables are build-
ing a subset of the vector of unknowns.

The modified nodal voltage system can then be ex-
pressed as follows:

Zyg
[K L

oet] ] = [t + [
Ync) (un —Kotee —Kcine
(28)
For building the state space system out of (28), the
history terms usz and inc have to be expressed by 7.,
upn, Uge and i,o at the previous time step k—1.
Using trapezoidal rule, the history values upr (k) and
inc(k) can be expressed as follows:
upr (k) = — LQAL{k)
=-LO[O (k- 1) +ir(k—1)]
=(Ry — LO)ig(k — 1) - wr(k—1) +qu(k -1)
(29)
and
inc(k} = — CQthp(k)
=-00 [Q"luc(k 1) +uc(k—1)]
=(Ge — Cuclk — 1) —iglk = 1) +i,c{k - 1)

(30)

Using the abbreviations
Zi =R, — LO (31)
YE =Ge -CQ (32)

the history terms of all elements are:
wunp (k) =Z3ig(k — 1) — ug(k — 1) +ugr(b— 1)
(33)
tholk) =Y6uc(k -1} —iclk— 1)+ ’iqc(k -1)
(34)
Finally, the element voltages ur(k —1) and ug(k — 1)

have to be substituted by ux (k- 1) using (20). The ca-
pacitive element currents ic(k — 1) must be eliminated

as well. This can be done by applying Kirchoffs current
law according to (19) again:

Keiclk—1) = Kpig(k—1)
The history terms (33) and (34) can then be rewritten:

uny(k) = Z5in(k —1) — K1un(k — 1) + ugr(k — 1)
(35)

Koinclk) = KoY oKL un(k— 1)+ Kpig(k—1)
e e’
Yie
+ Kc'iqc(k -— 1) (36)
Replacing the history terms in (28) by (34) and (33}

and inverting the system matrix the electrical network
can be described in a discrete time state space:

[’iL(k)] _

uy (k) B * |
AR s R ]

(2, -KD7 wernlk) +ue(k-1)
[KL YNC’} [Kc'iqc(k) - Kciqc(k - l)jl

(37)

VI. THREE PHASE SYSTEMS

The transfer from single phase to three phase systems
can be performed very easily by replacing each variable
by a vector and each parameter by a matrix (see. table
V).

The description by parameter matrices is valid for
a representation in original (abc) as well as in modal
co-ordinate systems,

In the derivation of single phase equation systems,
divisions have been avoided and the inversion operator
(...)~! has been used in the right sequence instead, so
that the replacement of scalar parameters by matrices
can be performed in a purely formal way. Additionally,
the unit matrix has to be used in the incidence matrices
instead of the scalar 1,

ViI. EXAMPLE

The example network of figure 2 consists of three L-
elements, one C-element and one R-element.
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Fig. 2. Example configuration

As in the previous sections, the L-elements are mod-
elled by voltage (Z) equations, the C- and the R-element
by current {Y) equations.

With the indices from figure 2, the following equation
systems are resulting:
Element current - nodal voltage (EC-NV) system ac-
cording to (21):

(Z: 0 0 0 0 -1 0 0 i1
0 Z ¢ 0 0 -1 1 0 i3
0 0 Z3 0 0 0 -1 1 i3
0 ¢ 0 10 0 Y, 0 iy | _
0 0 0 10 0 0 =-Yi|lis|"~
1 1 0 00 0 0 0 uUNL
0 1 -1 1 0 0 0 0 U2
[0 0 -1 01 0 0 0| |uws
-_"U-"q'}.H __uhl-l
0 —Uh2
0 —Up3
Ol 4] e (39
0 ins
0 v;
0 0
L 0 . L O -

Nodal voltage (NV) system according to (24):

[Yl+Y2

-Y: 0 UN]
-Y5 Yo+ Y+ Y, -¥; Uy =
] ~Y; Y3+ Y5 [uws

—ig —ip1 — ih2
0 |+ |the—ina—ina| (39)
0 th3 — th5

Modified nodal voltage system according to (27):

Z1 0 0O -1 0 0 i
0 Z, 0 -1 1 0 ig
0 0 Zz 0 -1 1 i3 |
1 1 0 0 0 0 juwm|
0 -1 1 0 Y4 0 UN2
0 0 -1 0 0 Y5| [uns
—"'Uql —”uhl1
0 —Uh2
O | 4 |7uns| (4
0 0
0 —ihg
| O _—ihs_

State space form according to (37):

Zy 0 0 -1 0 0 i1
0 Z, 0 -1 1 0 in
0 0 Z23 0 -1 1 i3 _
1 1 0 0 0 0 UN1 -
0 -1 1 0 Y4 0 UN2
0 0 -1 0O 0 Yii fuwns (k)
Zr 0 0 -1 0 0774 ]
0 Z; 0 -1 1 0 i
_ 0 0 Z; 0 -1 1 i3
1 1 0 0 0 0 UN1
0 -1 1 0 Y 0 UN2
0 0 -1 90 0 Ys“‘_ UN3 ] (1
ugi (k) +uq(k —1)

(41)

VIII. CoNcLUDING REMARKS

In contrast to the classical nodal voltage system, not
only current but also voltage equivalents can be used
together with the EC-NV- or the MNV-system. Hence,
a high flexibility in modelling power systems elements is
offered leading to equation systems with less numerical
problems even in case of very small integration step
sizes.

Finally, it has been shown, how the modified nodal
voltage system can be transformed easily into a discrete
time state space formulation to which the complete the-
ory of discrete time systems can be applied. The ex-
plicit form can also be used for very fast simulation
algorithms as required by real time applications.

The described methods have been implemented and
successfully tested in the power systems analysis soft-
ware DIgSILENT PowerFactory.
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