Representation of electrical signals

by a series of exponential terms

M. Alaoui Ismaili & A. Xémard
Direction des Etudes et Recherches, EDF

1, avenue du Général de Gaulle
92141 Clamart Cedex

Abstract— This study is devoted to the representa-
tion of electrical signals by a finite exponential represen-
tation. Three methods are investigated. The first one
is Prony method which consists in a time domain esti-
mation. The second one is equivalent in the frequency
domain. The third one is a new method which consists
in a frequency domain estimation permitting to limit
the size of the model. These methods are analyzed on
examples.
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NOTATION
t: tune
y: analytical signal
tn: discrete form of the signal y
z,: sample of the discrete signal y,
ay: poles of the kth component of Prony expansion
Ay residue associated to the pole ag
N: order of Prony decomposition
Py: linear prediction polynomial
H: IFFT (Inverse Fast Fourier Transform) of &
M size of the signal z,
At, /A: sampling step
LSME: least square mean estimation

I. INTRODUCTION

It is of considerable interest to use a complex expo-
nential expansion as an electric signal representation
because the parameters of the exponentials have very
often a physical signification. This permits also to com-
press information and it might be usefull to the numer-
ical treatment. Two approaches are considered to de-
termine the parameters of the exponential expansion:
time domain and frequency domain. The determina-
tion of the equivalent complex expansion of a signal,
say y(t), which is a causal real valued function in the
time domain, consists in identifying y(t) to a sum of
harmonic functions exponentially damped:

Pi2
y(t) = E Bj.eP** cos(wit + i), (1)

k=1

where P is an even integer. Each of the P/2 elemen-
tary function or harmonic is characterized by four pa-
rameters: the amplitude B; which is non-negative, the
damping 8 which thus fulfills 3 < 0, the natural fre-
quency wi and the initial phase &;. Expression {1) may

be rewritten in a general form of an expansion of com-
plex exponential functions, say,

N
y(t) = ) Ape™! (2)
k=1

such that R(ax) = Bx < 0 and P/2 < N < P, via the
transformation
wp £ 0

Ap = —'%&e'o"
Ag = By cos(f:)
3)

Since y(t) is a real valued function, the poles o and
the associated residues A; occur in complex conjugate
pairs except when they occur on the negative real axis
of the complex plane. In practice, the signal is recorded
by a data sequence at discrete time intervals. The ob-
ject is then to use all information provided by this data
sequence so as to be able to extract the poles and their
residues, namely to be able to refind the expected form
(2) or (1). If there were no uncertainty associated with
the data sequence or with the choice of the model (2)
then only 2N separate sample times would be required
to determine the poles and residues of the model ex-
actly. In contrary, if there is uncertainty in the data
sequence, say z(t;) at time ¢;, it is represented by

ap = Ok twy if
ar = Ok else

z(t:) = y(t) +e(ts), (4)

where ¢; is the noise disturbance in the data. The main
object now is to fit all the data (t;) to the model y(%:)
given by (2) in some best sense. The direct Prony’s
method or its equivalent frequency method may be
used but they present some limitations (section II) and
for the pratical case presented in section III a specific
method has been developped [3].

[l. PRESENTATION AND EVALUATION oF PRONY’S
METHOD
A. Direct method based on a least squere estimate

Assume that we have exact empirical values, ¥, =
y(n.At) of y(t) in (2) specified at equally spaced points,

n.At.
N
Yn = ZA;CZE Yne N, (5)
k=1
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where z; = e®*2%. The difficulty in solving (5) lies in
the fact it is non-linear in z}s. However, this difficulty
can be minimized as follows. Let us consider the linear
prediction polynomial

N
Pn(z) = H(z—zk‘l)
ag=1 (6)

Hence <I>N(zk_1) =0, % =1,...,N. Then the data
sequence (Yn Jneav Obey to the following recurrence

N

Zakyn-k =0, ap=1,
k=0

Vn> N (N

Assume that we have now a sample of the data sequence
yn of length M, say {#,,n = 1,..., M}. The latter
data sequence z,, is expected to fulfill equation (5) and
necessarily it must obey to the recurrence equation (7)
by taking into account the hnear prediction polynomial
(6). Prony method consists in three stages. The coef-
ficients {ax} are determined by solving (7) in which y,
is replaced by z,. This set of linear equations can be
solved exactly if M = 2N and in such case we are using
the basic Prony method, or by (LSME) if M > 2N and
we are using the extended Prony method, say

{ae} = —(XTX) 1 X7y, E=1L,N (8)
where
N EN=-1 T2 T3
- ;u;\,t.,.l :c:;\r T3 Z2 (o)
:z:M;_l -TM—.N+1 TM-N
and
vl = (ar, EM-1,- -, EN41), (10)

and we still call the last method by Prony method.
Solving the polynomial equation (6) finds the roots
Zk, and thus the poles

(11)

oy = —Al—tlnzk k=1,N

Then (5) becomes linear in the A;’s which can be
solved in the same manner as solving (8), namely by
LSME,

Ap = (VTV) v Ty, (12)
where
1 1 1
V= Z1 z:g va ’ (13)

which is Van der Monde matrix, and

T

¥ (14)

The above procedure is namely the direct Prony
method. _

In the next section an alternative and more inter-
esting method which consists in a frequency domain
estimation is introduced. As it is emphasized on one
example this alternative is more efficient.

y01yl;---gyM)-

B. Frequency domain enalysis

Let (yn)neav be the exact empirical values of the sig-
nal y(¢) defined in (5). The causality of y(t) permits
us to assume that y, = 0 for n < 0. By taking the
inverse Fourier Transform (IFT'), say (), of the data
sequence (yn)

40 = e VA€ [-7,7]
nx0

(15)

Using expression (5) and a direct calculation, we obtain
a partial fraction expansion

N
9(A) =
k=1

Ag
1—z.2'

(16)

3 xSt

where z = e™* and z; = e . Indeed, replacing y,
by it finite exponential expansion

N
th = e yne IV (17)
k=1

Inserting this in formula (15), we have

N
Z(ZAke“"”m)e_m’\ YA€ [, 7]

) =
n>0 k=1
N
- Z‘A"(Z e(ag/.\i—a.\)n) (18)
k=1  nzo0
I
It is easy to see that
1

I(A) = [ eerdm)’ (19)
and the expression (16) is proved. According to this
fact we deduce that the IFT (A} of the data sequence
(yn} can be written as a rational function, say

30) = e, (20)
where
N
Py(z) = JJ(1-zkz)
k=1
N
= Za;,,z", (21)
k=0

IPST '99 - International Conference on Power Systems Transients o June 20-24, 1999, Budapest — Hungary




which is the linear prediction polynomial associated to
the studied model, and

N

ZAka(Z)
k=1

N—1
= bz, (22)
=0

il

Qn(z)

where g

Ii(2) = Pn(2)/(1 — 22) (23)
Let us note that deg{Pn) = deg(@n) + 1 = N where
N is the order of the model and all frequencies of the
signal y(t) are determined entirely by roots of the linear
prediction polynomial Py.

Let H be the TFT of the numerical data sequence zy,,
The function H must thus be close to a rational fune-
tion of the form (20) which is the IFT of the original
signal, say

H(\) = Qﬁ(e"‘*) + E(X) (24)
Py ’
where E is an error function in the frequency domain.
Let us note that we can refind this by taking the IFT
in (4) and by using the Parseval Formula.
In order to determine the linear prediction polyno-

mial, we consider a frequency domain error of predic-
tion [1][2], say

en (@) Px) = f \PvH —Qnld\,  (25)

—%
The criterion (25) is quadratic and hence the condi-
tions for ¢y to be minimum are given by the first order
conditions [1][2]. Solving (25) determines the linear pre-
diction polynomial Py, and hence the poles ag via the

roots of Py. !

The residues Ay, are obtained by using (12).

Let us now examine the criterion (25). Introducing
a frequency grid on [0, 27],

1n(ze). (26)

27y .
A= —= K =0,...,M, 27
2 M ar 7 ( )
where M is supposed to be even, the criterion ey can
be written in a discrete form as follows:

M
ev(@n, Pv) = S [Py(R)H () — Qu(k)*  (28)

k=1

According to the frequency grid (27) the data sequence
{H(k)} is exactly the IFFT (Inverse Fast Fourier
Transform) of the sample 2,,. The coefficients (a;) and
(b;) of the polynomials Py and @n are obtained by
minimizing the quadratic error ey in the frequency do-
main. The necessary condition for ey to be minimum
is

aEN aEN

aai20120,...,N %=01=0,...,N—1
(29)

Hence:
R< PvH-Qn,Hz'>=0 i=0,...,N(30)
R<PvH-Qn,2'>=0 i=0,...,.N—(81)

where < f,g >= gi_olf(k)g*(k), and z =
—~2irk

(¢ M )i It leads to the symmetric linear system
of order 2N + 1

A 'B* X1y_ [ G
B D X: ] TN Cy
where X = (a;)os{SN and X, = (bi)OgigN-—l and the
notation ”*” designates the complex conjugate.
The coefficients of (32) can be expressed in a conve-

nient form with respect to FFT (Fast Fourier Trans-
form) computations.

(32)

Ay = R<HH'Y™ 1> for i,j=1N+(33)
By = -R<HAT 1> for 4,j=1,N (34)
ci = —R<HH'zH 1> for i=1,N+1(35)
C: = R<Hz 1> for i=1N (36)
D = MIy (37)

C. Numerical resulls and comparisen

In this section we consider a signal with an analytical
expression as a finite series of decaying exponentials.
We apply Prony techniques and the frequency method
for which the performance is compared.

Consider the case N=6 with the poles and residues
presented in table 1 and their associated conjugates

Table 1. analytical signal parameters

Poles Residues

ar=—0.1+:156 A4;=04-—10.2
as=-—02+11.8 As=10-1:05
ag=~-0.3+121.0 Az=20-:10

The form of this signal is illustrated in figure 1.

(=] 5 10 15 20 26 ED) 35
Time (seconds)

Figure 1. the waveform y(ti) sampled with interval
At =10.1 s.
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If we consider that At = 025 s, N =6 and M =
160 which imply a time interval [0, 40], we obtain the
right poles and residues by the different methods. Their
difference is the CPU time as shown in the following
table.

Table 2. (At =0.25 s)

Direct Method Frequency Method
1.68 1.18

CPU time
{Seconds)

All routines are programmed in a Matlab environment
and have been run in a SUN 10.

Consider now a time sampling At = 0.1 s and the
same time interval, say M=400. In this case the di-
rect Prony methods fails and provides wrong results but
the frequency method gives quite acceptable results as
shown in the following table.

Table 3. (At = 0.1 s)

Frequency Method
—0.1014 + :1.5001

Poles = —0.2000 4+ 21.8002
= —0.3000 + 2.9999

A1 = 0.4050 — 0.2023

Residues | As = 0.9979 — 20.4977

Az = 1.9978 —11.0006

The direct Prony method as it is known is highly
sensitive to the choice of the sample step. Similar con-
clusion can be drawn when a large time interval is con-
sidered. The above methods are limited because they
depend on the time step of the signal considered and
generated a great number of poles. The limitation is
critical for real time simulation. Hence, in order to de-
sign a propagation model for the TNA ARENE, a new
method [3], which is described bellow, has been applied
to represent efficiently the modal surge impedance of
cables with a limited number of poles.

ITI. CHARACTERISTIC IMPEDANCE REPRESENTATION

In order to design a model of cable fulfilling the teal
time simulation constraints, the representation of the
modal characteristic impedance of such a model must
be done by a minirmnal number of poles. In a Marti iype
propagation model, it is replaced by an equivalent sys-
tem (figure 2), constituted by elementary impedances

i

That means the characteristic impedance Z.(w) will
be represented as follows:

Ze(w) —ku-i-z (38)

J +P;

where {ko, k;, p;} are nonnegative real which are called
poles for the pls and residues for the kfs, respectively.

Ro=kp R.I:k’/p; R:"szpz Ry =kn /Py
Crallk, Cz=1/k, Cn=1/py

Figure 2. R-C network approvimating Z.(w)

In this section an iterative method permitting to obtain
a representation of the modal characteristic impedance
with a limited number of poles is presented. In practice,
the characteristic impedance is known at some non-
uniform discrete values of the frequency. In order to
cover a wide frequency range with a small number of
samples, a uniform logarithmically sampling is consid-
ered.

The main purpose herein is to define a minimisation
criterion which permits us to determine the poles and
residues independently from the time step used in the
transient simulation.

Let us note that a =transform which depends on the
time step sampling can not be applied here. The only
way to accomplish this is to proceed by a direct min-
imisation in the frequency domain.

For this purpose an adaptive criterion is constructed.
At iteration of order n, n poles are determined by solv-
ing only a linear system of order 2n + 1. Only nonneg-
ative poles and belonging to the range of desired fre-
quencies are considered. This process is stopped when
a relative error is reached.

Let N be the number of poles obtained. The next
stage consists in using a re-fitting in order to deter-
mine the associated residues. This is accomplished by
a least square minimisation of a quadratic criterion in
the frequency domain, which the minimum is solution
of a linear system of order ¥V + 1.

Details of this procedure are illustrated bellow.

A. Poles determination [3]

Let us consider the following series:

f(w) = ko + Z = +p‘ (39)
It can be rewritten as a rational function:
flw) = %(JW); (40)
where
N
P(w) = JJ(w+p) (41)
i=1 N
Q(w) = koP(p)+ Y kimi(w)
i=1
and
mw) =[] (w+p) (42)

B=lgzi
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We have deg(P) = deg(Q) = N and

N

P(z) = Zakzk, (43)
k=0
N

Q) = Y b, (44)
=0

where » = (). The coefficients of the polynomials P
and @ are real with ay = 1.

Let (wi)k=1,m be a logarithmically sampling of the
angular frequency, a first possibility for matching a
rational function consists in minimising the quadratic
convex frequency domain error:

M

J(P,@) =D | < Pw)Zo(wr) — Qn)?,  (45)

=1

First of all, let us note that we are interested in fre-
quencies varying from 0 to some kHz (10kHz). More-
over, the characteristic impedance has a real limit as
the frequency becomes large. Thus, a weighted crite-
tion which takes into account these facts may be more
satisfactory.

The criterion (45) often leads to satisfactory results,
but some trouble may arise because the target charac-
teristic impedance exhibits some narrow picks and is
very contrasted. Furthermore, it has only some domi-
nant poles with a great difference. Also, the criterion
(45) allows poles which values exceed wp, the maxi-
mal angular frequency considered. The linear system
to solve may appear to be ill-conditioned or the solu-
tion to be unstable. Tt is then worthwhile in such a
case introducing some penalization coefficients in crite-
rion (45) as well as performing iterative improvement
of the poles.

Therefore, the penalization coefficients are defined so
as to put more weight with respect to weak frequencies
and dominant poles.

Let wp be the associated sampling of the non-
dimensional variables. An interesting possibility to per-
form iterative determination and improvement of the
poles consists in minimising the successive criteria

Jat1(Prs1, @ntt) (46)
M
= 3 hagr (@) Pagr (@) Ze(wr) = Quaa(wd) %,
=1
where
Pow)=1  deg(Pa) <n (47)

and hp41(wi) is a weight function which depends on the
form of the signal and previous poles [3]. At each iter-
ation of order n, the sign of poles is controlled. Only
nonnegative poles which values do not exceed the max-
imal frequency will be considered.

B. Residues calculation [3]

Let p1,...,pn be the poles obtained in the above
section. Now our interest is to determine the associ-

ated residues ko, ..., kn. Let us consider the following
functions:
i(wy) = i=1,...,N (48)

e+ pi’

We are lead to minimising the following criterton;

M N
S 1Ze(wn) — [ko + D kswiaw)I?,  (49)
i=1 i=1

which its minimum is solution of a symmetric linear
system of order N + 1.

C. Ezample

The proposed procedure was applied to the charac-
teristic impedances associated to the single core of a
Coaxial cable system. Figures 3 to 6 illustrate the re-
sults obtained. Values of poles and residues obtained
are presented in tables 4 and 5. The value of residues
is multiplied by 1072 in table 4 and 10~* in table 5 and
are designated by the notation Res.

Table 4. poles and residues for Zeq(w)

Res | 0.07037] 4.4746 | 1.4561 | 0.5689 | 0.4797
Poles 44.9908 | 5.8648 | 1.1817 | 0.1379

Table 5. poles and residues for Zey(w)

Res | 0.0028 1 9.5755 0.1906 | 0.0658 | 0.0478

Poles 953.9659 | 10.5604 | 1.6096 | 0.1744

3
Loglf) Hz

Figure 3. real part of Z.1, accurated {(—) and
approzimaled (- - -)
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Figure 4. tmaginary part of Z.1, accurated (—) and
approzimated (- - -}

Aesl part
w00, T T * T T T

-1 o 1 H 3
tepih) Hz

Figure 5. real part of Z.3, accurated (—) and
approzimaled (- - -)

I L L i 1 z
-1 o 1 2 3 4 5 L]
Login Hz

Figure 6. imaginary part of Z.2, accurated {(—) and
approzimated (- - -)

IV. CoNCLUSION

Three methods for the representation of a signal by a
finite exponential expansion are presented and analyzed

in this paper.

The direct Prony’s method is shown to be tirme con-
suming and time step sensitive.

The equivalent frequency domain method is more ef-
ficient in terms of time consuming but is time step de-
pendent.

The last frequency method is more general, do not
depend on the time step used in the transient simulation
and permits the limitation of the size of the expansion.
This property is of practical interest especially for real
time simulation purpose.
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