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Abstract — This paper adopts a combined iterative method
( CIM ) as a basis of atransient calculation for nonlinear
circuits. CIM consists of a modified predictor corrector
iteration (MPCI) and Newton-Raphson iteration (NRI)
algorithms, and a parallel connection of a piecewise linear
conductance and a nonlinear current source for MPCI and
a parallel connection of a nonlinear conductance and a
nonlinear current source for NRI. [t is important to define
an adoption of iterative methods in CIM, because a
solution obit depends on the multi-dimensional plane
between an initial and real solutions.

This paper presents an optimum adoption of iterative
methods MPCI and NRI which are basis of CIM for
nonlinear simulations, an effective construction of MPCI
and Jacobian matrices based on a multi-dimensional
solution with Dommel’s method and an effective expression
of MPCI and NRI on EMTP-Type simulators. This paper
also demonstrates the proposed algorithm on an example
system, and compares the result obtained with a basic
nodal conductance approach (NCA). The results prove the
validity of those proposed methods for any kinds of
EMTP-Type simulators with nonlinear elements

Keywords  Nonlinear, Combined Iterative Method,
Modified Predictor Corrector Iteration, Newton-Raphson
Iteration, Optimum Adoption, Optimum handling, EMTP-
type Simulator.

I.INTRODUCTION

A nodal-conductance approach (NCA) with Dommel’s
method [1] is a basis of many Electro-Magnetic Transients
Programs such as EMTP, ATP [2] and PSCAD/EMTDC [3].
In this paper, the simulators based on Dommel's method
are defined as EMTP-type simulators. A piecewise linear
approximation model of a nonlinear element is a main
current in the field of electromagnetic transients simulators,
where a nonlinear element can be modeled by a paralel
connection of a linear conductance and a linear current
injection. However, the expression may make some
restrictions to model a complicated nonlinear element such
as fault arc models [4] and power electronics models [5]
( thyristor, diode, GTO and IGBT), which are utilized in a
simulation of a complicated system such as HVDC and
FACTS. A redtriction of arrangements of nonlinear
elements [6] is the one of those in the simulators, and
instability and inaccuracy caused by the piecewise
modeling and the arrangement can also result when applied
to the complicated system.

A linear interpolation [7,8] can represent smple nonlinear
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devices using piecewise linear approximations, and results
in stable and accurately calculated results for any number
of the nonlinear devices. However, it may be difficult to
express al kinds of nonlinear devices in this way.
Therefore it is important to complete a more general,
accurate and stable representation of the nonlinear
elements.

CIM [9] is adopted in this paper as a basis of atransient
calculation of nonlinear circuits. CIM consists of MPCI
and NRI algorithms, and a parallel connection of a
piecewise linear conductance and a nonlinear current
source for MPCI and a parallel connection of a nonlinear
conductance and a nonlinear current source for NRI.
Previous works in this area are based on Newton-Raphson
method in SPICE [10] and non-iterative method [2] in ATP,
but each has restrictions of the number and configuration
of the nonlinear elements, and involves some problems
such as instability, low efficiency, inaccuracy in
convergency. It is important to define an adoption of
iterative methods in CIM, because a solution obit depends
on the multi-dimensional plane between an initial and real
solutions.

This paper presents an optimum adoption of iterative
methods which (MPCI and NRI) for nonlinear simulations,
an effective construction of MPCI and Jacobian matrices
based on a multi-dimensional solution with Dommel's
method and an effective expression of MPCI and NRI on
EMTP-Type simulators. This paper also demonstrates the
proposed algorithm on an example system, and compares
the result obtained with a basic NCA. The results prove
the validity of those proposed methods for any kinds of
EMTP-Type simulators with nonlinear elements

1. ITERATIVE EQUATIONS

The basis of CIM isexplained in this chapter briefly. Itis
verified that basic formulas of MPCI and NRI method for a
nonlinear transient simulation can be expressed as a same
equation using Dommel’s method and CIM basis, and the
formulations make an effective construction and handling
of nonlinear matrixes possible asin section |11

A. Modified Predictor Corrector Iteration

One of the iterative methods in CIM is MPCI method.
MPCI method doesn’t require a lot of reconstitutions of a
conductance matrix G at each time step and each iterative
step, because a nonlinear element is expressed as a
piecewise linear conductance and a nonlinear current
injection.

The solution VO(t) of the following equation gives the



first estimation of theiteration ( prediction).
GV () = () + I(t, v(t - DL)) 1)

Theimproved solutions are repeatedly obtained by the
following iteration scheme ( correction):

GvH) =3+t v ) )
wherek =1, 2, v, : the number of iterations.

B. Newton-Raphson Iteration

NRI gives avery efficient means of converging to aroot,
if asufficiently good initial value can be guessed. If it fails
to converge, it indicates that the roots of the solution do
not exist nearby.

A typical problem gives N functional relations to be
zeroed, which involves variablesx;, i =1, 2, v4,N.

Fi(xl,xz, ,xN):O i=12 ,N. 3
Each of the functions F; in eg. (3) can be expanded in
Taylor series:

F,(x +dx) = E(x)+§£dxj +0(ax?) ()

=1 ﬂXj

where x : entire vector values x, F : entire vector of

functions Fi. The matrix of partial derivatives appearing in
€g. (4) is Jacobian matrix Jc.

TR
Jg; = 1]7 5
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In matrix notation, eq. (4) iswritten by:
F(x + dx) = F(x) + Joix + Oax?) (6)

By neglecting the term of order o’ and higher and by
setting F(x+dx) = 0, a set of linear equations for correction
ox, which moves each function closer to zero is derived
simultaneously.

Jexdx =-F (7

Eq. (7) in eectrical circuits can be solved efficiently by LU
decomposition. A correction is then added to the solution
VECtor X.

X oy = X g + 0X ®

new —

In an EMTP-type simulator, Jacobian matrix including
some nonlinear elements can be constructed in an example

with anonlinear element between nodei and j efficiently [9].

Circuit vector Fin eqg. (7) isexpressed asfollows:
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where G.: conductance of linear elements, Gy: conductance
of anonlinear element, J.: current source of linear elements,
Jn: current source of a nonlinear element. From above
relations, following Jacobian Matrix can be derived [9].
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In eq. (12), Jacobian matrix can be efficiently constructed
by differential function df/dv, which can be calculated
analytically or numericaly. If the function f can be
expressed analytically such as an arrester model, the
differential function df/dv can often be calculated by
analytical differentiation of f. If the function f cannot be
expressed analytically as a fault arc model, the method to
differentiate the function f can be calculated numerically.

C. Unified Expression of Iterative Equations

The feature of eq.(8) in NRI procedures make it difficult
to save the calculation time of a nonlinear circuit, because
an optimum handling explained in chapter 111 can not be
applied. Therefore, it is important that MPCI and NRI
equations egs. (1), (2) and (7) which are basis of CIM can
be expressed as a same equation using Dommel’s method
and CIM basis.

Eqg. (10) is substituted for eg. (7), and the following

equation can be derived.

Jexdv+Gv =] (13

Asthe derivations of eg. (12), an example circuit, which
includes a nonlinear element between node i and j, is
illustrated to compare the conductance matrix G with
Jacobian matrix Jcin eg. (13). When a nonlinear element is
composed of a piecewise linear conductance and a
nonlinear current injection, the conductance matrix can be
expressed as follows.
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Because the piecewiselinear conductance Gy of anonlinear
element is explained as in Fig. 1, it means that Gy is
equivalent to dffdv in eq. (12). Therefore, in CIM



procedures, both MPCI and NRI equations can be
constructed in the same eg. (1) and (2), but it should be
notice that the expression of MPCI conductance, of which
a nonlinear element is composed, is piecewise linear, not
nonlinear as NRI conductance.

Gu(MPCl)
i =f(v)
v e L v
Jwea X
JNRI
x GN(NRI)

for NRI Method
for MPCI Method

i =GynmyV* Iaw
i = GympcyV + Jupa

Fig.1 Difference of MPCI and NRI conductance

I11. HANDLING OF MATRIXES

A. Ordering of Nodes

When all elementsin the circuit are linear, those elements
isdescribed by the trapezoidal rule of integration [1] in the
following matrix equation:

G, v(t)=J(t) (15

where G, : linear (constant) nodal-conductance matrix, ) :
node voltage vector, and J(t) : linear current injection
vector. To save calculation time, the triangular
factorization of G, is performed only once before
advancing to the time step loop, and \t) is calculated by
the backward substitution. At the end of each time step,
J(t) isrenewed to calculate V(t+Dt).

When the circuit involves nonlinear elements, G_
depends on some factors as \(t). Thus, the retriangulation
of G, is required whenever the factors are changed at each
time step and each iterative step [11].

Theretriangulation of G_ in MPCI is not required at each
time step and iterative step, because the nonlinear elements
are expressed as a piecewise linear conductance and a
nonlinear current injection. For the retriangulation of
Jacobian matrix in eq. (7) isrequired at each iterative step in
the NRI method, the effective computation of Jacobian
Matrix applied the unified expression in chapter 11 becomes
important.

The optimum ordering for the optimum handling method
isillustrated in Fig.2.

linear nodes nonlinear nodes

linear nodes
without switches>>

linear nodes
with switches

without switches|
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nonlinear nodes | BN
>

nonlinear nodes |
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Fig. 2 Optimum ordering of nodesinG

B. OptimumHandling
(1) The advantage of LU decomposition

Matrix A can be written as a product of two matrices L
and U ( lower and upper triangular matrices respectively ).
When we solve the linear set by the following
decomposition [12],

Axx=(LU)x=L{Uxx)=Lx =b (16)

Lxy =bineq. (16) issolved to get the vectory. Then Ux =
y is solved to get the real solution vector x.

An advantage of breaking up one linear set into two
successive ones is that the solution of a triangular set of
equation is quite trivial. Thus, eq. (16) can be solved by
forward and backward substitution.
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The most important advantage for EM TP-type simulators
is that once we have the LU decomposition of A, we can
solve with as many right-hand sides b without
reconstructions of A.

(2) Crout’salgorithmfor LU decomposition

Very efficient procedure is Crout’s algorithm [12], which
quite trivially solves A = L:U by just arranging the
equations in the following order.
a) SetLi=1,i=1,...,N.
b) For each j = 1,23,...,N : First, for i = 1,2,...,j, use the
following equation to solve for U,

i-1

U; = A - ké LUy, (19)
=1

Second, for i =j+1,j+2,...,N use eg. (20) to solvefor Lj,

1 & L 0
L= — .- X .= 20
s Uj gAJ a= L'kUHﬂ (<0

Note that the both procedures have to be done before
going on to the nextj.

It is obvious from the above that L and U on the right-
hand side of egs. (19) and (20) are already determined by
the time when those are needed. Every A; is used only
once and never again, i.e. the corresponding L or U; can
be stored in the location where the A; used to occupy. In
brief, Crout’s method fillsin the combined matrix of L and U
by columns from left to right, and within each column from
top to bottom.

(3) Relations between LU decomposition and Norton-
Thevenin equivalent for nonlinear matrix equations
For an efficient and fast calculation of the nonlinear
conductance and Jacobian matrices, an equivalent circuit in
Fig.3 is proposed. Once the equivalent circuit is
determined, it is very efficient and fast to calculate the



nonlinear conductance and Jacobian matrices, because
linear nodes in Fig.3 needs not to be changed during the
whole time steps. To define this equivalent circuit
automatically for every kind of electromagnetic circuits, a
partidl LU decomposition and a partial forward and
backward substitution based on Crout’s agorithm are
proposed in this paper.

Linear equivalent circut
NE M T~

SETEY

NE : Nonlinear element
Fig. 3 Equivalent circuit for anonlinear circuit

® : Nonlinear node

Node 1, 2,..., M arelinear nodes and node M+1,..., N are
nonlinear nodes on a general nonlinear conductance and
Jacobian matrices.

a) Set L = 1,i =1,...N.

b) For eachj=1,2,...,M where M is the maximum number of
linear nodes : First, for i = 1,2...,j, use eq. (19) for Ui.
Second, for i =j+1, j+2,...,N use eq. (20) for Lj.
c)Forj=M+1:Fori=12,...,M, useeq. (19).

From the above steps @), b) and c), the nonlinear matrix A
isrenewed to the following matrix form.
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It is important that renewed elements Ui, L2, La,...., Un-
w+1, Umm+1 are constructed from the linear elements of A.
Therefore, the renewed elements are constant for the whole
simulation time steps and is performed only once before
advancing to the time step loop.
d) Thelinear part of y ( y1, Ya,..., ym ) is calculated from the
renewed elements Uiy, La1, Lag,...., Um-av+1, Unm+a by use of
eg. (17), and aso this part is constant and is performed
only once before advancing to the time step loop.
€) The nonlinear part of y ( Ywm+1, Ym+2,..., Yn ) and the
nonlinear part of x ( X, Xn1,..., Xw+1 ) are calculated
iteratively by CIM procedure.
f) After convergence, the nonlinear part of X ( Xwm, Xw-1,...,
X1 ) is calculated, and we can proceed to next time step.
During iterative terms, the following equations (LY, = b,
and U, x, = ,) are executed for the nonlinear conductance
matrix as a partial forward and backward substitution.
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If LU, is symmetrical, eq. (22) shows that every kind of
nonlinear circuits, which include M linear nodes and ( N -
M ) nonlinear nodes, can be expressed as the equivalent
circuit having only ( N - M ) nonlinear nodes as in Fig.4
which does not include any linear nodes. Actualy in all
the kinds of electrical circuits on an EMTP-type simulator,
L,-U, become symmetrical ( see appendix A1l for details and
verification ). From eg. (22), an equivalent conductance
matrix and an equivalent current injection vector can be
L,-U, and b, respectively.

Linear equivalent circuitwith no nodes

i
[}
1
Nonlinear node number M+1 |M+2 |

----- Electrical wire > 777
Nonlinear element

Fig. 4 Relation between LU decomposition and a nonlinear
equivalent circuit

(4) Comparison of the normal and partial method

A comparison of calculation times required for LU
decomposition, backward and forward substitution and
convergency isgiven in an example casein chapter V.

BasicNCA : 1.0
CIM without proposed method : 1.21
CIN with proposed method : 1.08

A difference of the calculation times heavily depends on
the ratio of the number of nonlinear and linear nodes, but
the proposed partial method is very efficient for treating
not only the huge number of nonlinear nodes but also small
number of nonlinear nodes. This method seems to become
more powerful with the optimum sparse matrix method
adopted in an EMTP-type simulator.

IV. EFFECTIVE ADOPTION OF ITERATIONS

NRI gives avery efficient means of converging to aroot,
if a sufficiently good initial value can be guessed.
Therefore, it is very important to exploit how the improved
solution is calculated from a first estimated solution which
is not a sufficiently good initial value. So far, an effective
adoption of iterations has not been discussed sufficiently,
only methods of an iteration for nonlinear circuit have been
researched.

CIM consists of two kinds of iterative methods, the most
important feature of MPCI is very stable if a sufficiently
good initial value can not be guessed, but the speed of
convergency heavily depends on the direction of nonlinear



conductances. On the other hands, the most important
feature of NRI isthat the speed of convergency is very fast,
but the stableness heavily depends on the multi-
dimensional plane between an initial and real solutions.

Therefore, a standard of a good initial value need to be
defined.

When the sign of first and second derivatives of
nonlinear functions is not changed on the multi-
dimensional plane between an initial and real solutions, the
initial value is regarded as sufficiently good ( region A in
Fig.5 ), but if the sign is changed during convergency,
MPCI method is employed to approach to a real solution
( region B in Fig.5 ). Namely, if the first and second
derivatives change their own sign during the way from
solution x; to X;,; and from solution x;.; t0 X+, continuously,
MPCI method replaces NRI one from the next iterative term
in CIM procedures. It means that a solution doesn’t exist
close to the solution x;. If the first and second derivatives
doesn’t change continuously, NRI method has been used
until convergency. After convergency by use of NRI
method, MPCI method is employed once to make sure that
the solutionisreal.

Xi+2

XiE
19. 5Procces of convergency
V.EXAMPLE CASE

An oscillator circuit using a tunnel diode which is
approximated ini = 2.83v° - 2.02v° + 0.37v is adopted as an
example case, which shows some advantages and the
correctness of CIM in EMTP-type simulator. As other
example cases for CIM (a diode rectifier circuit, an inverter
circuit using transistors, a fault arc circuit and so on) have
been illustrated in previous papers [4,9]. The oscillator
circuit is shown in Fig6. Simulated results with CIM
adopting proposed schemes (Dt = 150, 5ns), and basic NCA
results without iterations (Dt = 150, 5ns) are shown in Fig.7.
As it can be seen in Fig.7, the CIM results show aclose
agreement with a calculated result with small dt, and the
results obtained with CIM adopting proposed schemes are
almost the same using different time steps.
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Fig. 6 Oscillator circuit using atunnel diode
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VI. CONCLUSIONS

Some developments of CIM solution method has been
proposed to realize stableness and saving calculation time
on an arbitrary number and configuration of nonlinear
elements in a retwork. One of the developments is an
optimum handling method of the nonlinear conductance
matrix of CIM. The unified expression of nonlinear matrices
has made it possible to save calculation time using the
optimum handling based on the theory of Crout’s agorithm
for a linear circuit. It has aso proven that an effective
adoption of iterations contributes to the stableness of CIM
simulations,

The proposed methods have been applied to an
oscillator circuit using a tunnel diode. Calculated results
by the proposed method agree well withatheoretical result.
The proposed methods have been confirmed to be
accurate, fast and stable even for alarge time step, and can
survive from an abrupt change due to anonlinear element.

The proposed methods can be easily implemented into
an EMTP-type simulator because the methods are
extensions of the basic NCA method in the EMTP-type
simulator.
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VIII. APPENDIX

A1l. Proof of the symmetrical characteristic of the reduced
nonlinear conductance matrix

The pre-reduced nonlinear conductance matrix A, is
completely symmetrical.
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If we reduce thefirst line and column from eqg. (A.1), the
following equation is derived.
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From the symmetrical elementsC;; and C;; inthematrix C,
C;; subtracted C;; can be calculated as followsto prove that
incidental matrix C is symmetrical.

4 d o
C,-C,=alLy,- ka_ZijUH (i<j)
=A - LUy - (Aji - leuli)
=LV, - LUy (FromAij - A= O) (A3
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Therefore, the reduced matrix C is symmetrical. Namely,
reduced all matrices which are reduced some lines and
columns from a symmetrical matrix are symmetrical.



