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Abstract -This paper is concerned with a new approach the same concept to recognize the second wave front
for travelling wave distance protection, based on pattern returning from the fault. The common characteristic of these
recognition with principal component analysis (PCA), to  algorithms is that they have at least an operation time,of 3
be used for transmission line ultra-high speed protection. where< is the travel time between the relay and the fault
The proposed approach explores the possibility to point.
characterize the wave front shape for internal and This paper describes a new approach for travelling wave
external faults of the protected transmission line. In this  distance protection; the proposed approach explores the
case, a PCA with neural networks is proposed as feature possibility to characterize the wave front behavior for internal
extractor to implement the pattern recognition process. and external faults of the protected transmission line using the
The approach was proven with current and voltage first wave from the fault. A PCA algorithm with neural
samples from a three-phase 230 kV power system, which networks extracts the features from the relaying sigats (
was simulated using the Electro-Magnetic Transients in  S) in order to implement a pattern recognition process in a
DC program (EMTDC). The results show the feasibility 2D space called feature space. All information is normalized
to implement an algorithm for transmission line ultra-  to have zero mean and unity standard deviation. The
high speed protection. representation of the original relaying signals in the feature
space show a linearly separable structure, and it could be
Keywords: Pattern recognition, Principal componentsolved by any classification technique. It allows to

analysis, Power system protection, Travelling waves. discriminate between internal and external faults with an
operation time oft. Finally, an algorithm is proposed to
I. INTRODUCTION implement this function in real time for transmission line
protection.

Power system protection has traditionally relied on the
measurement of power frequency components for thg|. THEORY OF TRAVELLING WAVE PROTECTION
detection of faults. In conventional protection schemes, the
signals of high frequency introduced by a fault are considered When a fault occurs in the transmission line, by virtue of
as interference and are filtered out [1]. However, these highe superposition theorem, the fault injected componegnts
frequency components contain extensive information abowind i, can be acquired by subtraction of the steady-state
the fault type, location, direction and sustain time. In fact, theomponents from the post fault signals (incremental signals)
high frequency transient signals generated by a fault contajg]. For distributed parameter model representation of a
more information about the fault than power frequencyransmission line, the fault injected componeptndi; can

signals [2,3]. be expressed in terms of a forward and backward travelling
In ultra-high-voltage systems, in order to improve theyave:

transient stability, high-speed fault clearance is always

desired. The post fault voltage and current are initially  V(x,f) = F(x-ct) + Fy(x+ct) (1)
dommgted byeIectromggnetlctrayelhng waves. Ba;ed onthe 1) = F.(x—ct) - Fy(x+ct)/Z @)
analysis of these transient state signals, the travelling wave- 1 2 0
based protective relays can detect and locate the fault within ] ) o
several milliseconds after the fault. Due the development ¥fherec andZ, are the surge velocity and line characteristic
new generation fibre-optic voltage and current measuringnPedance, respectively, ant the distance that a travelling

systems, the travelling wave protection will have much wideWave travels from the fault point. .
application in the near future [1,4]. The forward and backward travelling wavgsand S,

The basic principle of the travelling wave distanceiSed in the travelling wave protection are defined as follow:
protection is to measure the time interval between the arrival
of an incident wave toward the fault point and that of the 25 = V) -ZI®) = S5, ®)
corresponding wave reflgcted fro_m it. Most of the present 2F,(5) = V) +Z, 1) = S,(® (4)
schemes use the correlation function method to recognize the

wave front returning from the fault. [5,6]. This is the radarsl(t) andSy(t) travel along the transmission line in opposite
principle. Most recently, some different techniques havgirections. When they hit a discontinuity, part of it will be
been used to improve the results obtain by the correlatiq@qected, and a part will pass to other sections of the system.
function, as wavelets [7], neural networks [8] and pattem e principle of the travelling wave protection can be

recognition methods [9]. However, these new approaches UgGstrated by the power system shown in Fig. 1. When a fault
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However, the performance of the correlation function
method depends on the fault resistence, the system
occurs at a position that B, km away from the relay, confi_gura.tion and the mode typg [9]. Thug, it _is necessary to
travelling waves would be generated and propagate along tR9dify this method for more reliable application.
line. When the backward travelling wawve arrives at the The proposed approach characterizes the wave front
source G1 behind the relay, reflection would occur. Th&ehavior for internal and external faults of the protected
reflected waveV,, would return along the line toward the fransmission line using the first wave from the fauitif
fault point. At that point, part of it would be reflected, andFi9- 1)- A PCA algorithm with neural networks extracts the
part of it would be transmitted, if the fault resistence is notéatures from the relaying sigr@@lin order to implement a
zero. The reflected wawé, would return to busbar 1 after Pattern recognition process.
some time.

If we can get the time intervg), between the arrival of
V, and that of the backward wawg,, thenD; can be
acquired fromt, by:

Fig. 1. Principle of the travelling wave protection.

Ill. PRINCIPAL COMPONENT ANALYSIS

The PCA is a statistical technique falling under the
general title of factor analysis [10]. The purpose of PCA is to
= vt /2 (5) identify the dependence structure behind a multivariable

0 . . . .

stochastic observation in order to obtain a compact

Dy

. o ) description of it. When there is nonzero correlation between

Hence the |dent|_f ication of the 5'9“%% becomes the ke_y the observed variables the dimensionatityf the data space
probl_em of tr_aveII_lng wave protection.. The CorreIat'on(number of observed variables) does not represent the
function technique is always used to fulfil it [5,6]. For three'number of independent variables,that are really needed to

phase transmission lines, the mutual elements of the SUrg&scribe the data. We may likerto the number representing

h ind d dal includi , Wherean is called the intrinsic dimensionality

t r%e n gpen ent _mlo adcomE)rcr)]nents, |r(1jcu ;]ng Or:fﬁearg?the data. The stronger the correlation between the observed
mode and two aerial modes. These modes have di ere\/ncrlriables, the smaller the number of independent variables
velocity and attenuation and hence lead to dispersion effegjs,, .o, adequately describe them

on wave fronts describe by pha_se components. For fully Thenobserved variables are thus represented as functions
transposed system, the two aerial modes have the sagie, |atent variables called factors, wheren and often
characteristic impedance and velocity. The mod <n. The simpler the mathematical form of the

transformation can be expressed by [6]: representation functions the more economical is the
description of the dependence structure between variables.

Av,(n =S LAWY (6) Traditional PCA is associated with linear transformations,
Ai ) = Q' A (7) which are the simplest and most mathematically tractable
function forms for representation. The factor variables are

whereAv(t) andAi(t) are the incremental phase voltages ané\lso calledeaturesof the multivariate random signal, and the

Av,, () andAi,(t) are the corresponding modal voltage andvector they form.|s a member of tf Ez_itqres space ,
1 o . . The usual objective of the analysis is to see if the first few
current.S* andQ™ are the transformation matrices. Three of

the constant modal transformation matrices for perfectlgOmponents account for most of the variation in the original
ata. If they do, then it is argued that the effective

transposed lines are: dimensionality of the problem is less tharin other words,



if some of the original variables are highly correlated, thewhen relatively few data are to be processed relatively few
are effectively the same thing and there may be near-lineimes. Adaptive methods (neural networks), on the other
constraints on the variables. In this case it is hoped that thand, are preferred with arbitrarily long or infinite sets of
first few components will be intuitively meaningful, will help data to be processed. Such methods require less memory for
us understand the data better, and will be useful in subsequeiata storage, since intermediate matrices are not explicitly
analysis where we can operate with a smaller number &rmed. In addition, adaptive methods with constant step-size
variables. PCA transforms a set of correlated variables togarameters that do not tend to Okase, can track gradual

new set of uncorrelated variables. changes in the optimal solution rather inexpensively
SupposeX = X, ..... , %, ] is an-dimensional random compared to the batch models. In general, the interest for

variable with meap and covariance matri¥. A new set of adaptive techniques arises wheis not known.

variablesy,, ¥, ...., ¥, which are uncorrelated, can be There are different models of PCA neural networks,

represented as a linear combination ofxtheo that: namely Oja’s model, Foldiak’s model, the GHA model, the

APEX model, Rubner’s model, etc. For our problem, we will

Yi=ag X tayXt..... +a, X, =" X (1) use the GHA model [11].

where a'=[a; a;..... a,; ] is the vector of principal V. THE GENERALIZED HEBBIAN ALGORITHM

components. We can prove that jtheprincipal component

is the eigenvector associated with ftielargest eigenvalue This algorithm proposed by Sanger [11] is capable to

of 2 [11]. Itis common to calculate the principal componentextract all the principal components from a data set. The
of a set of variables after they have been standardized to hawedel hasn output neurony,,.....y,, andn inputsx,.....X,.
a unit variance. This mean that one is effectively finding th@here are only feedforward connections between input and
principal components from the correlation mafxather output and the output is a linear function of the input:
than from the covariance matrix. The mathematical derivation
is the same, and the principal components are the Yy, =w'Xx
eigenvectors dR. However, it is important to realize that the
eigenvalues and eigenvectorsRowill generally not be the The updating equations for neuriofi=1,.....,m) are:
same as those af.
In our case, a-dimensional vectoK=[X, X, ....X,]" is Aw,. = B
formed with samples of the travelling waSge k k| i
Fig. 2 shows a geometrical interpretation of the principal

component subspace; based on the variance criterion thgerew = [W, W, ....w ]. The model extracts the finst
, ia Wip oo ]

principal component should be the one where the signal hggincipal normalized eigenvectors Rfunder the following
more energy; the least principal direction is the one with thﬁssumptions:

least energy. If the signal is, zero mean that the maximum
energy direction is also the direction of maximum spread o The input sequenced, is at least wide-sense stationary
in information theory, the direction that contains the most \yith autocorrelation matrisR. whose eigenvalues are

2
X ~ lzylkwlj,k } = YuWi ) 12)
<i

information of the signal (assuming it is Gaussian). positive, arranged in descending order, and whermthe
largest eigenvalues are disting:>..> A, > A, >...>
IV. PCA NEURAL NETWORK A >0
.>0.

_ _ . B. The step-size parameter sequeBgcis such that
There are two techniques to calculate the principal

components: the batch PCA methods and the neural PCA o
models. Batch methods are used to process finite sets of data. B, - 0 as k ~ ~ , and E B, =~
Because of storage consideration batch methods are preferred k=0
\ This assumption will be useful for showing the asymptotic
Loact N convergence of the algori_thm. We can prove thaj, Jim
principal . o wi=tey, My o) W,=26,, ..., M., W,=te,, wheree,, e,,....,
axis \ o o 7 First ejare the eigenvectors Bf Using a more rigorous approach,
\ . T principal Hornik and Kuan [11] have shown that the only
N ey e e asymptotically stable equilibria of GHA are the points W=[
R W, 1= [2e, ..., #2,]" while all other equilibria are
. WU unstable. The network implementation of this local GHA rule
L. ,:«‘ o N is shown in Fig. 3.
Lot \\ Once the process has finished, the matyix [ w;;, W, .....
7 N w;, " represent the principal components of the data storage
g \, in the matrixX. Making
\\
\ Y=WTX (13)

Fig. 2. Geometrical interpretation of the principal
component subses.



All 320 faults were solid three-phase to grouRg=(0).

Y4 Y Vs So, we have an input mate&with 31 rows (samples &)
ywy YW, YaWs _ and 320 columns (fault conditions).
i i ! It is important to realize that the principal components of
w, W, I W L e e . a set of variables depend critically upon the scales used to
X 6 7 6 < o— measure the variables. The practical outcome of the above
+ + + result is that principal components are generally changed by
Fig. 3. The network model for the local GHA rule. scaling and that they are therefore not a unique characteristic

of the data. An option is use the standard deviation for each
we obtain the projection of the original data on the subspace&riable to scale it. This ensures that all variables are scaled
of the principal components. Suppose we have a (50x1®&) have a unit variance and so in some sense have equal
matrix X (50 samples of 10 variables in column format); itimportance. This scaling procedure is still arbitrary to some
can be represented as a group of 10 points (or vectors) oexent, is data dependent and avoids rather than solves the
50-dimension space. If we apply the GHA rule describscaling problem. One of this preprocessing methods [11]
above fon=2 (to calculate the first two principal componentsnormalizes the input so that they have zero mean and unity
from X), we could represent the same 10 points in a twostandard deviation, as:
dimension spaca is (50x2) andy is (2x10)).

VI. PCA APPLICATION TO THE TRAVELLING Xi, new = (14)
WAVE DISTANCE PROTECTION

Lo . . This process generates two new vectors which contain the
The. pnnmpal idea to use the'PCA is carried 9“t a pattetlo an and standard deviation of the original inputs. Once the

recognition process to discriminate between internal anlqetwork has been trained. these vectors should be used to

external faults using the basic features extracted from the firﬁgn sform any future inputé

wave thgt arrive to the relay. We used the EMTDC program Using the GHA algorithm, we calculate the two first

.[12] .to simulate the three-.phase 230 kV power system sho incipal components to obtain a two-dimensional

n Flg' 4 and charactgn;e th.e first wave from the faUItrepresentation of the original data using (13). The results of

Details of the transmission lines used in this study ar

) . . i . X . is process are shown in Fig. 5 in two dimensions, where
contained in the appendix. A horizontal line conflguratlonare the faults in L1 artdare the faults in L2. We can see that
was chosen. oo _— : .

._principal components convert the original 31-dimension
For the prlesten(; SFtLJhdy’ t:e 2Wed§plohl éransm(rjﬂﬁt'osectors in 2-dimension vectors, but there is not a specific
matfix was selected with mo eT'(aerla mo'e), an € feature that allows to implement a pattern recognition
dimensional vectoX=[x;, X, ....x]" is formed with samples process
of the travelling Wavé$1 using a simulation time step of The result shows in the Fig. 5 indicate a strong effect of
Ljsec, _In order to consider the first wave front f“’f“ the fauhthe fault condition on the principal components. However, an
we decide to use 31 samplespfor distinct fault points and X

. N i ; _analysis of this result shows that exist a specific behavior
inception time with respect to the 60 Hz voltage signal, with y P

. : with respect to the fault inception time. So, we repeat the
5 samples before and 26 after the fault inception. P P ' b

In this case, 31 samples representj@bc, which is process for a_lll faul_ts Wi_th the same inception time

ller time tha't the travel time along the tran’smission "nemdependently Its position; in other words, we obtained 16
smafier 9 . airs of principal component for each inception time from 4
(0.338 ms for L1 and 0.341 ms for L2). The purpose is t % 19 ms. These results are shown in Fig. 6.

avoid the effect of the continuos reflection process presentin We can see that neural network extract the principal

the line ends. The fault conditions simulated were: features from the travelling wa® let it know a special data
structure, which could be solved by any classification
technique, as statistical, neural network, fuzzy logic, etc.
However, itis necessary to test if this behavior is independent

Internal faults: 10 to 90 and 95 % for 4 to 19 ms.
External faults: 5 and 10 to 90 % for 4 to 19 ms.

L1 L2

Relay position

1
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Fig. 4. Three-phase 230 kV power system.
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Fig. 5. Fault conditions in the PCA subspace. Fig. 7. Discrimination between internal and external

faults using the PCA.
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Fig. 8. Fault conditions (26) in the PCA subspace.
of the fault position, either internal and external faults. With

this purpose, the next six faults were simulated: that, the normalized signals are represented in the principal

component subspace, where those differences are amplified,
For an inception time of 8 ms: showing that the final structure of the fault conditions in 2D

— Faultin L1 at 82 and 91 km from relag, is linearly separable (third graphic); it allows to use any
— Fault in L2 at 8 and 15 km from transmission linesclassification technique. Fig. 8 show all 26 fault conditions in
union ). the PCA subspace, where the matkand* correspond to
For an inception time of 8.4 ms: the original 20 patterns shown in Fig. 6 for faults in L1 and
— Fault in L1 at 85 km from rela]. L2 respectively, with an inception time of 8 ms.
For an inception time of 7.8 ms:

— Faultin L2 at 20 km from transmission lines uniei ( VII. ALGORITHM

These six faults were not being considerate in the The results describe above indicate that is possible to
principal components extract process and include two faultgplement an algorithm to protect all the transmission line
did not occur at 8 ms, but nearly it. Fig. 7 describes how tH¢sing 16 pairs of principal components for distinct fault
PCA differentiates between internal and external faults usiri§ception times on a 60 Hz cycle. The diagram blocks in Fig.
these six faults as an example. The first two-graphics sho#suggest the following logic: using a 31-data window3he
the 31-samples of the travelling waSidor each fault, before Signal is formed continually apply a modal transformation;
and after the scaling process. Once these signals akgen a fault occurs, the inception time could be determinate
normalized, it is possible to observe some differencedPProximately using the transition frof=0 to S,#0 (fault
between the waveforms for either internal and external faultgetector algorithm used in overcurrent digital relays [1]).
The principal features of these differences were captured fAnce the inception time is known, the algorithm selects the
the PCA vectors during the neural network training. Aftecorresponding transformation vectors (previously stored) and
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[5]

Extract the fault
inception time:
S,=0 = $,;#0

[6]
converts the original data to the principal component
subspace to carry out a pattern redétogm process and
decide if the fault is internal or external of the protected
transmission line. [7]

Although the results obtained areagl, it is necessary to
show the feasibility of this kind of algorithm, and to study the
effect of the power system configuration and the transmission
line impedances in the principal components extractiofs]
process as the next steps of this approach.

VIIl. CONCLUSIONS

The basic principle of the travelling wave distance
protection is to measure the time interval between the arrivgd]
of an incident wave toward the fault point and that of the
corresponding wave reflected from it. The correlation
function, wavelets, neural networks and pattern recognition
methods have been used to solve this problem. [10]

The proposed approach characterizes the wave front
behavior for internal and external faults of the protectefll]
transmission line using the first wave from the fault. A PCA
algorithm with neural networks extracts the features from the
relaying signas, in order to implement a pattern recognition[12]
process. It will allow to discriminate between internal and
external faults with an operation time ofinstead 3 as in
the previous methods.

The final structure of the fault conditions in the PCA
subspace is linearly separable for all faults with the same
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Xl. APPENDIX

inception time, independently of its position. So, anyLine 1: two conductors per phase, r=0.01 m#0.03206
classification technique could be used to discriminatehms/km, Z=313.15 ohmst=0.338 ms.
between internal and external faults. Finally, an algorithm ikine 2 one conductor per phase, r=0.02034 gR.03206
proposed to carry out this function in real time forohms/km, Z=391.77 ohmst=0.341 ms.

transmission line protection.
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