
 
 

 1/6 

A Fortran-95 implementation of EMTP algorithms 

Jean Mahseredjian1 , Benoît Bressac2, Alain Xémard2, Luc Gérin-Lajoie3, Pierre-Jean Lagacé4  
(1)IREQ / Hydro-Québec 

1800 Lionel-Boulet 
Varennes, Québec,  
Canada, J3X 1S1  

(2)Électricité de France 
Direction des Études et 

Recherches  
1 ave. du Général de Gaulle 

92141 Clamart Cedex 
 

(3) TransÉnergie,  
Hydro-Québec, Complexe 

Desjardins,  
CP 10000, Montréal, 

Canada, H5B 1H7 

(4)École de Technologie 
Supérieure 

1100 Notre Dame Ouest 
Montréal,  

Canada, H3C 1K3 

Abstract - This paper presents a complete Fortran-95 based 
implementation of EMTP type algorithms. It demonstrates 
software engineering advantages and proposes formulations 
and programming designs most suitable for  transient 
analysis computations in Fortran-95. Computing 
performance is compared against Fortran-77 usage. The 
coding experience presented in this paper demonstrates that 
Fortran -95 is not just a logical upgrade from Fortran-77, it 
is a modern and powerful language and should be even 
considered as the preferred language choice for large scale 
transient analysis application development. 

 
Keywords : Software engineering, EMTP, Fortran 

I.  INTRODUCTION 

This paper presents an experience in software 
engineering for programming EMTP (Electromagnetic 
Transients Program) [1] type algorithms. Although the 
presented material is related to transients, offered ideas and 
experiments are applicable to other power system analysis 
applications. 

There are several software engineering considerations 
in recoding or writing from scratch a large scale power 
system application. The most important consideration is the 
choice of the programming language. The programming 
language plays a predominant role in the software 
engineering cycle. An advanced language can provide 
means for fast translation of mathematical formulations 
into actual code. The ultimate combination is very high-
level programming resulting in extremely efficient code. 
Although interpreter based languages (such as [2]) or visual 
design environments can become very powerful, they are 
still unable to achieve the computational speed provided by 
compiler based languages. Automatic compiler based code 
generation from high-level languages, lacks  specialization 
and has difficulties replicating conceptual thinking for the 
most efficient coding path. 

Increasing problem complexity requires more powerful 
constructs and syntax in a computer language. In the past 
twenty years, computer science has progressed dramatically 
and spurred interest on the use of new programming 
languages such as PASCAL, ADA and most notably 
C/C++ and now Java.  

Large scale transient analysis applications have been 
traditionally coded and maintained using almost 
exclusively the Fortran-77 language. Fortran-77 has been 
standardized in 1978. Its dominance in all fields of 
numerical computations has kept increasing as new and 
highly optimizing compilers became available. For 

numerical and historical reasons Fortran is still considered 
as the language of computational science and kept on 
surviving in the midst of new and modern languages.  

Although several modern language concepts and 
constructs can be imitated in Fortran-77, it remains a 
strongly handicapped language in several aspects and more 
fundamentally in dynamic data allocation, parallelism and 
programming safety. Fortran-77 is not an object -oriented 
language, it is behind C and C++ for data abstraction and it 
lacks recursion and data structures.  

It requires a major investment and strong justifications 
to rewrite an existing large scale Fotran -77 application with 
a modern and significantly different computer language, 
such as C/C++. Automatic translators are unable to 
maintain the original conceptual thinking and usually create 
code maintenance problems. Experience has shown that 
manual conversion of Fortran legacy code into C/C++ is a 
extensive task, there are also concerns about reported poor 
performance.  

Although some of Fortran-77 features are becoming 
obsolescent and may completely disappear in a fut ure 
language revision cycle, the new Fortran-95  [3][4]  
standard stays fully backward compatible with Fortran-77. 
Fortran-95 is also a modernized language most suitable for 
numerically intensive applications. These are the main 
reasons why a natural and cost effective transition from 
Fortran-77 is Fortran-95. Nevertheless, the coding 
experience presented in this paper demonstrates that 
Fortran-95 is not just a logical upgrade, it is a modern and 
powerful language and should be even considered as the 
preferred language choice for power system transient 
analysis application development. Additionally, there is 
also a migration path to parallel computers, since High 
Performance Fortran is also based on Fortran-95. 

II. FORTRAN-95 ADVANTAGES 

The most useful new features of Fortran-95 for EMTP 
algorithms are grouped into “array building and 
manipulation” and “data abstraction”. The first group 
includes dynamic memory allocation, data parallelism, 
array sections and array operations. The second group 
includes derived data types, programming with modules 
(hiding, scope and encapsulation), interface definition and 
operator or function overloading.  

For the rest of this paper, the Fotran-95 version of 
EMTP will be referred to as EMTP-F95. 



 
 

 2/6 

A. Modularity 

There are several programming language features that 
are useful in the programming and maintenance of large 
codes. Modularity is among the most important features. 

 The code that modifies data for a component, must be 
localized and confined to a related location in the program, 
and not spread throughout the entire code. This is what is 
meant by encapsulation. It goes beyond the definition of 
function or subroutine by allowing all related operations 
(methods) to be grouped around a defined data type. It shall 
be allowed to hide data and methods. Fotran-95 allows 
encapsulation and information hiding. Fortran-95 has the 
notion of scope. Scope means that an internal function 

(FUNCTION or SUBROUTINE ) is within its host's scope 
and therefore has access to all the host's entities with the 
ability to call other internally defined functions. External 
functions can be called from anywhere and contain internal 
procedures. 

Fortran-95 has introduced the module unit. It is used for 
data encapsulation and global data. The generic form of a 
module is  
MODULE module-name 
[specification construct] 
[ CONTAINS ] 
[subprogram] 
END [MODULE [module-name] ] 

Language keywords are in bold (in this paper) characters to 
enhance visualization. A module can be accessed by 
another program unit using 
USE module-name 
Modules permit specifying private and public attributes for 
data and functions. An interface block can be used to 
provide an explicit interface to module procedures. 
Functions placed in a module are automatically checked for 
the number of arguments and for argument types by the 
compiler. It is a very important safety feature in Fortran-95. 

To be more specific, all EMTP components can be 
contained in  separate and completely detachable modules. 
The list of components includes network element models 
and program procedures for network solutions and 
input/output operations.  

Module usage dictates the design of EMTP-F95 code. A 
completely modular architecture is created by using a core 
code capable of handling all the required solution methods 
and interacting with network components (models) only 
through a specific set of communication protocols, called 
request signals. Components react by sending back 
participation data. Each component module is completely 
encapsulated and based on “case” selectors. Each case 
being a response section for the received request. 

Modules are also very useful in the development project 
of a large scale application; programmers can work in 
parallel for coding separate modules by strictly defined 
interfacing with the core code only.   

B. Derived types 

Encapsulation and information hiding allows defining 
derived (abstract) data types. A derived type is a user 
defined type built up from intrinsic types and previously 
defined derived types. There are several advantages in 

using derived data types, those that have been exploited in 
EMTP-F95 are code readability, simplified access to data 
and memory management.  

The following lines of code, extracted from the Zinc 
Oxide (ZnO) arrester model, are presented to illustrate some 
of the above concepts. 
MODULE zno_branch 
  USE input_data 
  USE plot_memory  !to transmit outputs 
  USE service 
  USE sparse_main_mat, & 
      ONLY: put, putnonl, fill, & 
      Vaug, Vaug_c, n_Ynonlin, Inonlin 
  USE all_purpose, ONLY: int2str,angle 
  INCLUDE 'default_header.f90' 
TYPE, PRIVATE:: zno_str 
 REAL(krealhp)  :: Rss    ! steady-state R 
 REAL(krealhp)  :: Vref   ! reference voltage 
 REAL(krealhp)  :: Vflash ! flashover voltage 
 INTEGER        :: loc    ! locator in char 
 INTEGER        :: knode  ! left node vector 
 INTEGER        :: mnode  ! right node vector 
 REAL(krealhp)  :: Iq=zero  !Norton current source 
 REAL(krealhp)  :: G=zero   !Norion admittance 
 REAL(krealhp)  :: i        !element current 
      
 REAL(krealhp)  :: vkm=zero !voltage  
 INTEGER :: state=0  !flashover state 
 INTEGER :: segnow=0  !operating segment at t 
 INTEGER :: lastseg=0 !operating segment at t-Dt 
 
 REAL(krealhp) :: tol=1e-6_krealhp;  
END TYPE zno_str 
   
TYPE, PRIVATE:: zno_char 
 REAL(krealhp),  POINTER,DIMENSION(:) :: p  !ZnO p 
 REAL(krealhp),  POINTER,DIMENSION(:) :: q !Zno q  
 REAL(krealhp),  POINTER,DIMENSION(:) :: V !min  
 REAL(krealhp),  POINTER,DIMENSION(:) :: vpast  
END TYPE zno_char 
            ………………………………… 
TYPE(zno_str),  & 
    DIMENSION(:), ALLOCATABLE, PRIVATE :: Zno 
TYPE(zno_char), & 
    DIMENSION(:), ALLOCATABLE, PRIVATE :: Znoch 
            ………………………………… 
CONTAINS 
  SUBROUTINE znomod(ido) 
   INTEGER      :: k,i,j,jj 
   CHARACTER(LEN=*) ido 
   REAL(krealhp) :: vnew,iguess,vguess 

………………………………… 
   todocall : SELECT CASE (ido) 
   CASE('initialize') !* initialization procs 

………………………………… 
   CASE('put_nodes_in_Yaug') !*symbolic data 

………………………………… 
   CASE DEFAULT 
   RETURN 
   END SELECT todocall 
   RETURN   
  END SUBROUTINE znomod 
END MODULE zno_branch 
The following lines are explanatory remarks for the above 
code sample. 

The chosen convention in EMTP-F95 is to use upper 
case only letters for language keywords. Code variables are 
based on lower case letters, but it is allowed to use capital 
letters for increased visibility of some variables, such as the 
data holder structures. Fortran-95 is not case-sensitive by 
itself. Lines or inline sections starting with an exclamation 
mark indicate a comment. The character & is the 
continuation character. 



 
 

 3/6 

The USE  statement requests visibility within the 
module’s scope of public names (data and functions) 
available in external modules. Here the ZnO model is using 
data and functions from several modules. It is allowed to 
limit accessibility using the ONLY  statement, as is the case 
for the sparse_main_mat  module usage. In this 
example, only the put ,  putnonl  and fill  methods 
(functions), and only the variables Vaug, Vaug_c , 
n_Ynonlin  and Inonlin  can be accessed from 
zno_branch. Limited accessibility limits global memory 
usage and provides increased modularity. 

A derived type (structure) is created by the type 
declaration keyword TYPE. It is allowed to initialize data 
fields in the derived type creator. Initialization is either a 
number or a previously defined variable. This component is 
designed using 3 structures: Zno , Znoch and Znopar 
(not shown). Since Zno and Znopar  must hold data for all 
arresters in the solved case, it is necessary to declare them 
as ALLOCATABLE. Memory allocation issues are 
discussed in a following paragraph.  

The PRIVATE keyword hides data and functions from 
other modules capable of connecting to this module 
through a USE statement. Procedures in other modules can 
never impact on declared private parts. 

Fortran-95 allows controlling precision using 
predefined variables in the declaration statement. In the 
above real number declarations krealhp indicates the 
highest precision available. It is defined in the 
default_precision  module. A single line of code 
change is thus needed to change precision in the entire 
program. The module default_precision is not 
explicitly referenced in the zno_branch . That is due to 
the fact that using a module provides automatic access to 
the modules it is using. In this case 
default_precision  is used by out_saver, which is 
used by input_data . The USE feature is tricky. Chained 
USE  statements can create loops. They can also sophisticate 
relations between modules even when carefully designed. 

The core code can only access the subroutine znomod 
through a call using a request keyword. Each request 
keyword is handled in a separate CASE  section when the 
component must participate (reply) to that request. 

C. Memory allocation 

Fortran-95 alleviates a major limitation of Fortran-77 
by allowing standard memory allocations and deallocation 
calls. An allocatable vector (or array) must be declared with 
using the ALLOCATABLE  keyword. Fortran-95 also allows 
dynamic arrays. Dynamic arrays are used only inside the 
procedure, they are created on procedure entry and 
destroyed on procedure exit. Arrays in Fortran-95 can be 
viewed as objects with data and size information. 
Subroutine variables are defaulted to automatic. 

To allocate the entire Zno  structure for n arresters in 
one statement, it is required  to use: 
ALLOCATE(Zno(n),  STAT=j); %j flags memory error 

To access the fields of Zno it is needed to use the % 
symbol, such as: 
Zno(i)%vkm=vguess; 

A structure can also contain separately allocatable fields, in 
Fortran-95 they must be declared with the POINTER 
attribute. This is useful, when, as in Znoch , the fields of 
the derived data type are not of the same length. The choice 
of structures and related fields is motivated by code 
vectorization possibilities available for their usage.  

D. Overloading 

Some component case sections must be designed to 
reply to the core code using predefined functions available 
from the core code. Here are, for example, the CASE 
sections used by the RLC component for sending its 
equations into the core code’s system of equations: 
CASE('put_in_Yn_ss')  
  RLC%gz=RLC%R+jz*(w*RLC%L- RLC%C/w); !jz=sqrt(-1) 
  RLC%gz=inv_vector(RLC%gz); !1/RLC%gz, 0 when 0  
  DO k=1,SIZE(RLC) 
    CALL fill(RLC(k)%knode,RLC(k)%knode,RLC(k)%gz) 
    ………………………………… 
  END DO 
    ………………………………… 
CASE('put_in_Yn')   
  DO k=1,SIZE(RLC) 
    CALL fill(RLC(k)%knode,RLC(k)%knode,RLC(k)%g) 
          ………………………………… 
  END DO  

The fill  function transmits required data into the large 
system matrix. It is an overloaded function, capable of 
handling both complex (for steady-state) and real (for time-
domain) systems of equations. Function overloading refers 
to using the same function name, but performing different 
operations based on argument type. In addition to function 
overloading it is allowed to define operator overloading. 
These are new and powerful coding options in Fortran-95, 
since Fortran-77 allowed overloading only for intrinsic 
functions and data types. To construct a generic fill 
function it is necessary to place an interface statement in 
the sparse_main_mat module: 
INTERFACE fill 
     MODULE PROCEDURE fill_c,fill_r 
END INTERFACE 

Interface functions fill_c and fill_r are separately 
defined. The compiler automatically calls fill_r or 
fill_c depending on the type of the third argument in 
fill usage, real or complex respectively. A similar design 
is applicable to the function inv_vector  used in the 
above RLC example. 

In Fortran-95 it is required to provide the overloading 
function (method) for all possible variations in input 
arguments. If a method is defined for a derived type used as 
a vector, it must be also defined for the same derived type 
used as a scalar. When scalar and vector combinations are 
considered and a total of na arguments are used, a total of 

na2 methods must be defined. This is true even if 
som etimes the underlying codes can be identical. The best 
demonstration of this statement is given by the angle 
function used for finding the angle of a complex number or 
vector. Its interface is defined  in the EMTP-F95 
all_purpose  module: 
INTERFACE angle 
     MODULE PROCEDURE angle_real,angle_vector 
END INTERFACE 

The function angle_real  is given by: 



 
 

 4/6 

FUNCTION angle_real(phasor) 
 COMPLEX(krealhp) :: phasor 
 REAL(krealhp) :: angle_real 
 angle_real=& 
 ATAN2(AIMAG(phasor),REAL(phasor))*rad2deg; 
END FUNCTION angle_real 

The function angle_vector  is given by: 
 
 
 
 
FUNCTION angle_vector(phasor) 
 COMPLEX(krealhp), DIMENSION(:) :: phasor 
 REAL(krealhp),& 
 DIMENSION(SIZE(phasor)):: angle_vector 
 angle_vector=& 
 ATAN2(AIMAG(phasor),REAL(phasor))*rad2deg; 
END FUNCTION angle_vector 

The only difference between angle_real  and 
angle_vector is in the declaration of arguments. It is 
achieved by noticing that in Fortran-95 intrinsic functions 
are overloaded to handle arrays. Some other noteworthy 
features appearing in the above exa mple are: the variable 
rad2deg  is obtained from the scope of the module 
all_purpose ;  the intrinsic SIZE  function allows 
declaring data of the same size as the input argument. 

E. Vectorization and high-level coding 

Vectorization is another key ingredient for high-level 
constructs. Native operators and functions in Fortran-95 are 
readily overloaded for handling vectors and matrices. Such 
overloading and the ability to access array sections, 
provides means for vectorized and high -level coding in 
EMTP-F95. Some examples are given below. 

The first statement for RLC%gz  in the above RLC 
example is able to act on all RLC branches through a single 
line of code. DO loops can be avoided in these cases. More 
sophistication is apparent in the computation of RLC 
branch current at a given time-point: 
RLC%i_at_t=RLC%g* & 
          (Vaug(RLC%knode)-Vaug(RLC%mnode))+RLC%h  

The vector Vaug is the solution vector, it contains node 
voltages for the entire system. Using  
Vaug(RLC%knode)  finds the vector of all left node 
voltages for all RLC branches only. 

High-level coding in EMTP requires advanced 
functions for searching in arrays. Fortran-95 has built-in 
functions for testing conditions on arrays. The statements 
below are extracted from the ideal switch code. 
WHERE( (Sw0%newstatus==0) .AND. (Sw0%status==1) )  
      !test current for this condition 
  WHERE( (ABS(Vaug(iloc+Sw0%in)) <Sw0%eps ) .OR. & 
         (Vaug(iloc+Sw0%in)*Sw0%ilast < zero) ) 
     Sw0%newstatus=0; !allowed to open 
  ELSEWHERE 
     Sw0%newstatus=1; !stays closed 
  END WHERE 
END WHERE 
IF (ANY(Sw0%newstatus.NE.Sw0%status)) THEN 
          rebuild_for_sw=1; rebuild_this_sw=1; 
ENDIF 

The WHERE construct allows performing operations on 
selected array sections. Here it is used to test and set switch 
status for all switches. Using ANY provides a high-level 
syntax for setting the refactorization signal. 

Another example of high-level coding with arrays is the 
usage of locator and extractor functions. In this example it 
is desired to find the operating segment in the nonlinear 
arrester model for a given voltage condition. Here is how it 
is expressed in Fortran-95 
j=Zno(i)%loc+Zno(i)%state;             
d=MAXLOC(Znoch(j)%V,& 
         MASK=ABS(Zno(i)%vkm)>Znoch(j)%V);  
Zno(i)%segnow=d(1);  
The MAXLOC statement uses a conditional mas k for 
locating the operating segment in a characteristic vector 
situated by the pointer j. 

The solution method for nonlinear branches in EMTP-
F95 is an iterative process where each nonlinear component 
is represented by a Norton equivalent. To avoid numerical 
problems it is necessary to save and refresh the sections of  
the sparse matrix Yaug where nonlinear branches are 
connected. This is achieved in a single statement in the 
code lines shown below. Since the original size of 
Ynonlin  (the memory refresh mat rix) is overallocated, it 
is necessary to pick-up the maximum number of cells using 
the actual size given by n_Ynonlin . 
Yaug(Ynonlin(1:n_Ynonlin)%j)%value= & 
Ynonlin(1:n_Ynonlin)%value;  
Inonlin=zero; VaugOld=Vaug; !reset 
The last line of this code is for resetting the entire vector 
Inonlin  and saving the previous iteration solution in 
Vaugold .  

F. Object oriented programming  

Fortran-95 is not a fully object oriented language. It is 
however feasible and practical to adopt OOP (Object 
Oriented Programming) in Fortran-95. Almost all features 
of C++ can be reproduced directly or emulated in Fortran-
95. Fortran-95 has the notion of class through modules. It 
supports inheritance since derived types can be made of 
other types and create a derived class built upon the base 
class methods. Fortran-95 is directly capable of static 
polymorphism using the INTERFACE block construct. The 
most significant exception is runtime polymorphism 
(dynamic dispatching)  since its emulation requires more 
effort. 

It is not obvious to decide on how to improve 
productivity through OOP. Experiments demonstrated that 
full OOP for this type of application can create a cryptic 
code and drastically lack performance. That is why, even 
though many of OOP ideas were retained, the OOP 
programming p aradigm was not adopted. 

III.  EMTP-F95 CODING EXPERIENCE 

The EMTP-F95 program used in this paper has most of 
the main components and solution methods of the standard 
EMTP. It has been entirely coded in Fortran-95. Several 
iterations were required before deciding on programming 
rules and the most appropriate selections of constructs. 
Those iterations allowed to experiment with high-level 
programming in relation with computer timings.  Since 
overall program readability and maintainability are key 
factors, the final selections were made following a balance 
between readability and efficiency. Surprisingly, most of 



 
 

 5/6 

the new constructs retained in Fortran-95 did not 
deteriorate speed. Compared to Fortran-77 and C/C++, the 
experience related in this paper, concludes that the created 
code allows a much faster software engineering cycle, is 
easier to follow and is more robust.  

A. Main considerations 

As explained earlier, the data encapsulation and  hiding 
principles allow coding an entirely modular software. In 
addition to the fact that modules can be coded in parallel, 
multiple authors can also develop program pieces which 
will be used by others. EMTP-F95 is a completely modular 
program. Its main architecture is composed of a core code 
surrounded by component modules. 

The core code provides all the “methods” for handling 
input, output and sparse matrix solutions. Its main objective 
is to solve a main sparse system of the type Ax = B or more 
specifically stated in the nodal analysis context, 

aug aug augY V I= . The subscript “aug” means augmented, 

since this formulation does not restrict to pure nodal 
analysis and allows including source, dependent branch and 
switch equations. Even though the majority of unknowns is 
composed of node voltages, the unknowns vector augV  can 

also hold currents for the additional equations created in 

augY . More details on this formulation can be found in [5]. 

Its resemblances with the Tableau Approach make it most 
appropriate for the fully modular architecture proposed in 
this paper. Components can interact with the main system 
of equations through predefined put (for symbolic 
factorization) and fill (for actual values) functions.  

Component modules include several services for 
solution methods and all the network component models. 
Each EMTP-F95 model is coded in a separate and 
completely detachable module. In fact a module can be 
ultimately rendered as a DLL (Dynamic Link Library) for 
allowing special software configurations. Each network 
component is designed to interact with the core code 
through a predefined ensemble of core code requests. A 
core code request transmitted to a component  is a request 
for participation in the ongoing solution method. The core 
code has no other access to the component and the 
component does not need to know what is happening in 
other component modules. 

B. Enforced programming rules 

More powerful languages provide more expressive 
freedom and power. This is the case of Fortran-95. If there 
are no guidelines, collaborating programmers can create a 
cryptic and inefficient code.  

In addition to the overall software architecture, several 
programming rules were enforced in EMTP-F95. These 
rules allowed to maintain the previously stated balance 
between readability through high -level programming and 
efficiency. The gained experience is shared in here by the 
following  list of primary coding practices when using 
Fortran -95 in EMTP-F95. 
§ Avoid Fortran -77 constructs and obsolescent features: 

GOTO , COMMON, EQUIVALENCE… 

§ Full matrix usage must be avoided unless very small 
sized matrices are used in some components. The main 
system matrix is a sparse matrix. All vectors must be 
allocated automatically by the program. The number of 
allocations must be minimized by grouping data. 
Deallocation calls must be minimized and applied 
mostly for large temporary (nonrecurring) usage 
arrays. 

§ Pointer type usage must be restricted to derived types 
with fields of different lengths. More than one 
grouping derived types can be chosen to avoid pointers 
when readability and programming methods are not 
significantly handicapped. Other pointers must be 
imitated instead of explicitly declared. 

§ Several levels of the WHERE  construct can create 
performance problems when working with large 
vectors and must be used with caution.  

§ There are no major requirements for overloading 
operators for derived types in EMTP-F95. Service 
routines, however, must hide coding details from users, 
by providing appropriate overloading interfaces. Such 
overloading must be available for all possible 
variations in input arguments. Optional subroutine 
arguments (new in Fortran-95) can be used to simplify 
usage of service routines. 

On the issue of vectorization, it has been observed that 
in Fortran-95, vectorization impacts more on readability 
than speed. The conclusion may be different however, on 
parallel computers. More experiments are needed also for 
the indexed parallel array assignment statement FORALL. 

Another important issue is the possible penalty resulting 
from Fortran-95 data abstraction features. Benchmarking of 
carefully designed cases and overall software speed 
indicates that there is almost no penalty on highly 
optimized compilers (see also similar conclusions in papers 
found in [4]). Some degradation has been observed when 
using abstract types with array pointers. This is due to the 
fact that derived data types cannot contain allocatable 
arrays directly and pointer type usage is mandatory. The 
Fortran-200x standard should overcome this limitation by 
allowing allocatable arrays instead of pointers in derived 
data types. 

C. Encountered limitations 

Fortran-95 does not include intrinsic methods for 
handling sparse matrices and matrix operations. It is a 
significant handicap for power system software 
development. Sparse matrices must be created and 
maintained using derived types and a substantial 
programming effort is required to code sparse matrix 
solvers and to overload functions for operating on sparse 
matrices. 

Fortran-95 is still lacking a large library of intrinsic 
functions required in typical software engineering. Several 
array search functions have been added and the support for 
string manipulations has been dramatically increased, but 
some basic functions, such as “sort”, “unique”, 
“sortunique”, “angle” and “interpolate” are still missing. 
The same comment applies to more advanced linear algebra 
functions. If Fortran-95 is given a standardized library of 



 
 

 6/6 

functions similar to MATLAB [2] , it will gain unsurpassed 
capabilities in numerical computations. 

Due to graphical user interface issues, the Fotran-95 
code must be able to interact with C/C++. Although this is 
easily available in most compilers, it is not yet part of the 
Fortran standard. The Fortran-200x standard [6] should 
provide improved interoperability with the C language. 

The fact that using a module automatically provides 
access to the modules it is using, created complex module 
dependency structures in EMTP-F95. It is not easy to avoid 
multiple dependencies. It requires careful documentation of 
module dependencies to avoid illegal loop chaining of 
modules. 

D. Performance 

Comparing EMTP-F95 performance with the existing 
Fotrtran-77 based EMTP is not a simple task. It is not only 
a matter of using different languages, EMTP-F95 used a 
new set of solution methods and component 
implementations. In some cases such methods can impact 
on speed while providing advanced capabilities. EMTP-
F95 uses partial pivoting in the solution of its main system 
of equations and uses a non-symmetric system matrix. 
Nevertheless, when the coding recommendations stated 
above are carefully followed, EMTP-95 despite its 
advanced coding and modernized methods, remains 
surprisingly as efficient as EMTP for benchmark cases with 
similar models. This conclusion is applicable for both very 
large and small system benchmarks. 

IV.  CONCLUSIONS  

Fortran with its Fortran-95 standard and the upcoming 
Fortran -200x standard, is advantageously maintaining itself 
in scientific computation applications.  

This paper has demonstrated that Fortran-95 is a 
powerful and modern language. It is significantly different 
from its predecessor Fortran-77. Fortran-95 maintains 
computational efficiency and provides means for enforcing 
software engineering rules in code robustness and 
maintainability. This paper indicates that Fortran-95 is not 
only a logical transition from Fortran-77, it can or should 
be considered as the preferred language choice for EMTP 
develop ment. 

This paper has presented several Fortran-95 features 
most suitable for EMTP type software development. It has 
presented an experiment useful to other developers for 
similar large scale software development projects. 

V. REFERENCES  

[1] Electromagnetic Transients Program (EMTP), 
Development Coordination Group of EMTP. 

[2] MATLAB . The MathWorks Inc. 

[3] J. C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith 
and J. L. Wageneer: Fortran 95 Handbook, Complete 
ISO/ANSI Reference. 

[4] http://www.fortran.com/fortran/metcalf.html 

[5] J. Mahseredjian and F. Alvarado: “Creating an 
Electromagnetic Transients Program in MATLAB: 
MatEMTP”. IEEE Transactions on Power Delivery. 
January 1997, Vol. 12, Issue 1, pages 380-388 

[6] http://www.j3 -fortran.org/ 


