
International Conference on Power Systems Transients – IPST 2003 in New Orleans, USA 
 

State-Space Transient Analysis of  
 Single-Phase Transmission Lines with Corona  

Mehmet Salih Mamis 

Department of Electrical and Electronics Engineering  
Inonu University, 44069-Malatya, Turkey 

(email: smamis@inonu.edu.tr) 
 
 
Abstract - State-space techniques are used for the 
computation of the surge response of a transmission line with 
corona. The transmission line is treated as the series 
connection of short line sections, and the effect of corona is 
represented in each section by a nonlinear (voltage 
dependent) capacitor-conductance branch. Surge response of 
the transmission line is obtained for various corona models by 
taking into account the corona loss and the dynamic variation 
of the corona parameters. Computed results are compared 
with measured results available in the literature.   
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I. INTRODUCTION 

Corona is an electrostatic discharge mechanism which 
occurs due to ionisation in an insulation material subjected 
to electric field intensity over a critical level. Corona is the 
cause of power loss on transmission lines, audible noise, 
and electromagnetic interference in communication 
systems. As the corona phenomenon has significant 
effects, it has drawn great attention and becomes an 
important aspect in many engineering areas. Analysis of 
corona is important for power system protection since 
lightning surges travell ing on transmission lines are 
significantly infuluenced by corona, and determination of 
electromagnetic transients for the prediction of insulation 
level and design of the surge arrestors requires that corona 
effects be included. 

One way to determine the effect of corona is to perform 
the experiments. However, for every set of new parameters 
(such as the shape and magnitude of the applied voltage, 
the dimensions and physical properties of the transmission 
system, etc.), this requires performing of a new 
experiment, and in many cases, even the experimental 
results may not be available because physical system does 
not exist yet as in the design problems.  

The equations describing the corona behaviour cannot 
be combined with the partial differential equations of 
transmission lines in a closed-form formulation. Therefore, 
numerical methods based on time domain solutions such as 
the finite difference methods [1-3] and the method of 
characteristics [4,5] are generally used, or models 
involving distributed nonlinear hysteresis-loop behaviour 
are evaluated for implementation in the EMTP 
(Electromagnetic Transients Program) modell ing [6-11]. In 
some of these models, nonlinear (voltage dependent) 
resistors and capacitors are used, which necessitates the 

use of special analysis techniques [6-9]. In some others 
linear constant capacitors and resistors, diodes and dc 
voltage sources are commonly used [10,11]. However, 
most of the computational methods available are applicable 
to some specific models and cannot easily extend to other 
corona representations.   

In this paper, the state-space technique presented in 
[12] is used for the computation of electromagnetic 
transients on a single-phase transmission line with corona. 
The method is based on the formulation of state equations 
from the lumped-parameter transmission line model and 
conversion of these equations into a set of linear algebraic 
equations by the use of trapezoidal rule of integration. To 
simulate the corona mechanism, a nonlinear shunt 
capacitance is used to represent q-v characteristic of the 
charge accumulation, and a nonlinear conductance is used 
to characterize the power loss in corona. Two analytical 
corona models available in the literature [2,13,14] are 
examined involving the corona loss and the dynamic 
variation of the corona parameters. Advantages of the 
state-space method over the existing methods are that no 
convergence, initialisation, instabil ity problems, and no 
restrictions such as the number and configuration of 
nonlinear elements. 

II . STATE-SPACE REPRESENTATION 

A. Formulation 

Transmission line is a distributed parameter system. 
Current and voltage relations on a transmission line are 
expressed by partial differential equations, known as 
Telegrapher’s Equations. When corona effects are 
included, solution of these equations is difficult. To 
overcome this diff iculty, lumped parameter transmission 
line modell ing is used, and the transmission line is 
represented by a large number of identical lumped 
parameter sections connected in series to simulate its 
distributed nature [15-17]. Nonlinear (voltage dependent) 
capacitance-conductance branches of the corona can be 
combined with the geometric shunt parameters of the 
transmission line and L-equivalent model shown in Fig. 1 
is thus used to simulate one section of the transmission 
line. In this model, R and L are the resistance and 
inductance of one section, nonlinear G is the shunt 
conductance representing corona losses, and nonlinear C 
represents both the geometric and the corona capacitance. 
R and L in this model are constants, but G and C are 
functions of the voltage due to corona. The lumped 
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parameter model for a single-phase transmission line with 
corona, which is obtained by connecting many lumped 
parameter sections in series, is shown in Fig. 2. The total 
number of L-sections in this model is assumed to be n. The 
state equations for the transmission line with corona can be 
written in matrix form as 

)()()( ttt BuAxx +=
�

  (1) 

where x is the state vector with the initial value xo, A and B 
are the coefficient matrices with proper dimensions, and u 
represents the vector of inputs. Assuming a voltage source 
at the sending-end of the line, and using the network theory 
we obtain the state equations as: 
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The above set of first order differential equations are 
obtained by choosing inductor currents and capacitor 
voltages in the transmission line model as the state 
variables. In this equation the elements of the state vector 
are inductor currents (i j, j=1,2,...,n) and capacitor voltages 
(vj , j=1,2,3,..,n) shown in Fig. 2, and Gj and Cj are 
conductance and capacitance of section j, respectively.  

B. Solution of State Equations 

 Since the capacitors and conductances of the line with 
corona are voltage dependent, many elements in matrix A 
are variable and the state equations describing the 
behaviour of the system cannot be solved analytically. One 
way to solve the nonlinear state equations is to transform 
these equations into a set of linear algebraic equations by 
employing the numerical integration methods [12]. Time 
discretization used for numerical integration facilit ates 
representation of nonlinear variations in the system.   

 

 

 
 
 
 
 
 
 
 
 
 
Fig. 1 L-section of a transmission line segment with 

corona. 

By employing the trapezoidal rule of integration, the 
above set of coupled differential equations can be 
transformed into a set of linear algebraic equations as  
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This equation can also be written as 
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In the above set of equations, subscript k and k+1 for 
the state vector x and input u denotes the values of these 
vectors at tk � � � 	  and tk+1 
 � � 
 � � � � , respectively. Before 
starting to a new state, the coefficient matrices are renewed 
depending on terminal voltages of the nonlinear elements 
in the system. Subsequently, the new coefficient matrix 
Ak+1 is determined. Then, the state vector at a discrete time 
point is determined by solving Eqn. (4) and thus the 
response of the system is obtained by repetitively solving 
this set of equations starting from k=0. The flowchart for 
the state-space algorithm is shown in Fig. 3. For the 
solution of the linear set of equations in (4), LU 
decomposition given in the next section has been applied.  

 

 

 

 

 

 

Fig. 2 Equivalent model of a transmission line with corona. 
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Fig. 3 Flowchart for the state-space algorithm. 
 
C.  LU Algorithm 
 

Using matrix operations and inversion for the solution 
of the set of simultaneous equations in (4) is time 
consuming and may lead to inaccurate results.  To 
overcome these difficulties, the linear system of equations 
in the form 
 
 bAx =   (7) 
 
can be solved using LU decomposition. The square matrix 
A is decomposed as A=LU, where L is a lower triangular 
matrix in which the leading diagonal elements are unity 
and U is an upper diagonal matrix [20]. Using this 
decomposition, the set of linear equations can be written as 
 
 bLyLUx ==  (8) 

 
To solve the above equation for x, the vector of unknowns, 
firstly intermediate variable y is determined by solving 

bLy =  using forward substitution, and then x is 

determined by solving yUx = . The expression for 

computing elements of matrix U and L are 
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Note that it is possible to overwrite A with the elements of 
(L+U-I) as they are formed, which reduces computer 
memory requirements. 

III. CORONA MODELS 
 

 A number of models have been used for the simulation 
of corona in power systems. Many of them are presented to 
investigate overvoltages in high-voltage power 
transmission lines due to lightning, energization, and other 
sources of transients. These models can be classified as 
static and dynamic models depending on the functions 
describing the variation of the corona capacitance. In static 
models, straight line or parabolic approximations of q-v 
curves of corona are used. On the other hand, in dynamic 
models, the change of corona capacitance is dependent on 
both the voltage and the rate of change of the voltage. In 
this study, two available analytical corona models are 
adopted; i) Gary’s model [2], ii ) Skill ing [13]-Umoto [14] 
model. These models are described in the next sections 
briefly. Note that, the corona capacitance and conductance 
are extra elements connected to the circuit when the 
voltage across these elements v is greater than the corona 
inception voltage vc and 0)/( >dtdv , otherwise they are 

zero. The second condition characterises the dynamic 
variation in the corona parameters, and the derivative of 
the voltages can be determined from their algebraic 
equivalents in right hand side of Eq. (2). 
 
A. Gary’s model 

The corona capacitance presented by Gary et al. [2] 
involving the geometric line capacitance is defined as  

1
0

-
cc )(v/vCC ηη=  (11) 

where Cc is the corona capacitance, C0 is the geometric line 
capacitance, vc is the corona inception voltage and η is a 
coeff icient, which for a single conductor, is given by the 
following experimental formula [21] 

 2.122.0 += rη  (12) 

where r is the conductor radius in centimetres. 
 
B. Skilli ng and Umoto Model 
  
 As a second, the nonlinear corona capacitance 
presented by Skil ling  [13] and Umoto [14] is adapted for 
the state-space simulation. The corona capacitance is 
defined as  
 
   )/1(2 vvkC CCC −= F/m (13) 

 
where vC is the corona inception voltage,   
 

    102/ 11−= xhrk CC σ  (14) 

 
and σC is corona loss constant, r and h are radius and 
height above ground of conductor, respectively. 
 
C. Modelli ng of Corona Loss 

 
The occurrence of corona discharge produces changes 

not only in the instantaneous values of the line capacitance, 
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but also the line conductance. The corona attenuation loss 
is modelled by a resistive current loss through the resistive 
branch to ground which is defined as [21] 

    )/1( 2vvkG CRC −= mho/m    (15) 

where  

    102/ 11−= xhrk GR σ mho/m  (16) 

 and σG is the corona loss constant. 

IV. APPLICATION AND RESULTS 

 As an application, the surge response of a 2185.4 m 
transmission line subjected to a 1.3/6.2µs double 
exponential voltage surge with an ampli tude V=1560 kV is 
computed by the state-space method. The simulation 
attempts to reproduce a field test reported in [22]. The 
corona voltage is vc=550 kV, conductor radius of the 
transmission line is 2.54 cm, and the average height above 
ground is 18.9 m. High frequency parameters of the line 
are r=11.35 Ω/km, l=1.73 mH/km, and c=7.8 nF/km. 
Variation of the voltages obtained by the state-space 
method for x=655.6 m, x=1291.4 m and x=2185.4 m 
together with the applied impulse wave (voltage at x=0 m) 
using Gary’s model and Skilling-Umoto model are given 
in Fig. 4a and b, respectively. The corona constants for the 
Skil ling-Umoto model are taken as σC=30 and σG=10x106 
[6]. The voltage curves are plotted by shifting in the order 
of their travel delay on time axis and another transmission 
line with the same characteristic is used for the termination 
at sending-end to avoid the reflections. Considering fast 
rising time of the applied surge, step length for numerical 
integration is chosen as ∆t=0.05 µs and 110 lumped 
parameter L-sections are used for the simulations. The 
measured surge voltages [22] on the line are shown in Fig. 
5. When the computed results are compared with the 
measured ones, a good agreement can be observed between 
the curves obtained by the state-space technique using 
Skil ling-Umoto model and experimental ones. However, 
there are some differences between the measured results 
and the curves obtained by using Gary’s model, which may 
be due to corona capacitance being more effective. The 
ripples after the wave crest in the computed results are also 
more definite in the case when Gary’s model is used.  
 

V. CONCLUSIONS 
 
 State-space techniques are used for the computation of 
surge response of a transmission line with corona. 
Available analytical corona models in the literature are 
adapted considering the corona losses and the dynamic 
change of the corona capacitance. The obtained results are 
compared with the experimental results available in the 
literature. Comparisons show that the model suggested by 
Skil ling and Umoto with proper corona constants is more 
satisfactory than Gary’s model in reproducing the 
experimental results. 

 

Fig. 4 Surge response of the line with corona computed 
using a) Gary’s model, b) Skilling-Umoto model. 

            x=0 m,                       x=655.6 m,            
            x=1291.4 m                 x=2185.4 m 
 

 

Fig. 5  Measured surge response of transmission line with 
corona [22]. Voltages at; 

           x=0 m,                     x=658.4 m,            
             x=1295.5 m               x=2185.4 m 
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