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I. INTRODUCTION 

Recent developments in power systems, particularly in 
the application of power electronics, require the power 
system simulation tools be adapted to the specific behavior 
of these devices. The most common approach for detailed 
simulation of transients in power systems uses a fixed in-
tegration time-step with the trapezoidal integration method. 
This provides acceptable precision when the integration 
time-step is correctly selected according to system time 
constants. Problems arise with the introduction of natural 
and forced commutated devices. Although implementing 
Backward Euler integration in trapezoidal integration 
[1][2] or applying interpolation at discontinuity points, 
removes numerical oscillations and simplifies switching 
device modeling by eliminating the conventional numeri-
cal snubbers, the fixed integration time-step remains an 
important drawback. If the simulation method cannot ac-
count for the possibility of firing and extinction between 
two discrete simulation points, errors occur, non-
characteristic harmonics are generated and abnormal oper-
ating modes appear. One corrective measure is to decrease 
the integration time-step at the expense of much longer 
computation time. This can increase the precision in most 
cases, but does not resolve the issue of simultaneous 
switching. The difficulty is that a variable time-step prob-
lem is being solved with a fixed time-step and ideal or 
linear switching device models. The fixed time-step re-
mains a requirement to avoid unaffordable long computer 
execution times in addition to significantly increased com-
plexity in device model programming. Moreover, at the 
power system analysis level, it is not necessary to model 
the switching devices with great detail since it has no sig-
nificant impact on power system behavior. 

Recent promising work [3]-[6] in this field is based on 
using interpolation and/or reinitialization techniques. The 
distinctive points of such techniques are reinitialization, 
interpolation for numerical oscillations and ability to solve 
both forced commutation and natural commutation condi-
tions. 

In addition to discussing previously available methods, 
this paper presents a new method, capable to interpolate 
and reinitialize to account for both forced and natural 
commutation conditions. 

II. SOLUTION METHODS 

Power semiconductor switches, typically diodes, thyris-
tors, GTOs and IGBTs can be simulated using a number of 
techniques, in increasing order of complexity and increas-
ing simulation time: ideal switches, non-ideal switches and 
physical models. The non-ideal switches are created by 
adding basic elements (resistors, capacitors, inductors and 
sources) in parallel and in series with ideal switches. The 
physical models are micromodels of the appropriate semi-
conductor technology, but they are not practical at the 
converter circuit and system levels. Power system simula-
tors can provide acceptable results using the ideal and non-
ideal switch models. Ideal means infinite resistance when 
open and zero resistance when closed. It is not recom-
mended to apply very large and very small resistances, 
since this introduces conditioning problems in the solved 
system matrix and levels the integration time-step. 

A. The problem of numerical oscillations 

The change of status of an ideal switch can create volt-
age and/or current discontinuities. An important drawback 
of the trapezoidal integration method is its oscillating be-
havior following a discontinuity. It can be easily illustrated 
for the case of a transformer inductance being switched off 
in a converter circuit. At a given time-point the inductance 
current is given by: 

t t t t t tL L L L
t ti v v i

2L 2L −∆ −∆
∆ ∆= + +  (1) 

If switch opening is detected at time-point t: 

t t t tL L L
2Lv v i

t+∆ =− −
∆

 (2) 

Since t tLi 0+∆ =  the next time-point solution gives: 

t 2 t t tL Lv v+ ∆ +∆=−  (3) 

and the oscillating condition is established. Numerical os-
cillations can be eliminated [1][2] using two halved time-
step Backward-Euler integrations when a discontinuity is 
detected at time t  so that: 
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t t / 2 tL L
2Lv i

t+∆
=−

∆
 (4) 

and since 
t t / 2Li 0
+∆

= , 
t tLv 0
+∆
= . 

Another possibility is to apply interpolation [3] for volt-
ages between time-points t t+∆  and t 2 t+ ∆ . According 
to equation (3) this will result into t 3 t / 2Lv 0+ ∆ = .  

In both of the above approaches there is a problem on the 
significance of the intermediate solution. This can be illus-
trated using the circuit of Fig. 1. If the switch is forced to 
become open, then an impulse voltage will result on the 
inductance and the diode will turn on. If the Backward 
Euler method is used and if the intermediate solution in (4) 
is neglected, it will simply eliminate the impulse and the 
diode will not turn on. This problem has been demon-
strated in [7] and recognized in [1]. A possible compensa-
tion for this problem is to account for the intermediate 
computation step [1]. But it is not simple to derive a rule 
for distinguishing between true and false impulse condi-
tions. Indeed for the natural commutation case, the result-
ing impulse is only numeric (since the switch opens at cur-
rent crossing zero) and should be discarded. There is also 
the possible simultaneous (within the same time-step) oc-
currence of true and false impulses in separate circuit sec-
tions, which may require using complicated topological 
recognition. 
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Fig. 1 Converter circuit used to demonstrate switching problems 

The circuit of Fig. 1 also needs a simultaneous solution: 
the diode must operate simultaneously with the switch. If, 
for example, the diode opening is delayed after the switch 
closing, then the dc voltage will be forced onto the capaci-
tor and the solution will become totally wrong. Using man-
ual switch dependence is useless since the same circuit 
may enter a discontinuous mode. A simple solution to the 
simultaneous switching problem is to restart the circuit 
solution without advancing in time until all switches have 
settled. This will not cover for switching occurring within 
a time-step. 

More precision can be achieved by accounting through 
interpolation for the actual switching time within a time-
step. 

B. Interpolation techniques 

The distinctive features of applied techniques are reini-
tialization, elimination of numerical oscillations and the 
ability to solve both forced commutation and natural com-
mutation conditions. The scope of this paper is on non-real 
time simulators.  

The following presentations are based on method de-
scriptions found in scientific publications. In some cases a 

method may appear straightforward, but there could be 
several unrevealed details in the actual implementation and 
some assumptions must be made in independent prototyp-
ing and testing. 

The proposed approach for visualizing an interpolation 
technique is to present the switching device current ( SWi ) 
trajectory in conjunction with the various solution time-
points. The algorithm should be able to solve equally well 
the forced and natural commutation conditions. A diagram 
for the forced turn-off (GTO, for example) case is shown 
in Fig. 2. A solution is normally taken from the time-point 
t  to t t+∆ . A discontinuity due to turn-off is encoun-
tered when moving to t 2 t+ ∆ . The difference with a thy-
ristor is that the current between points 0 and 1 cannot be 
assumed to be linear (shown by the dashed line). If the 
solved system at each time-point is expressed through ge-
neric nodal analysis ( =YV I ) then an interpolated solu-
tion can be found at dt − . The following steps are related 
to the employed algorithm. The dotted vertical lines are 
used here to denote the original time-mesh. The blue verti-
cal lines are for distinguishing the time-mesh related to dt  
and the red vertical lines are extra time-mesh lines required 
in a given algorithm. 
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Fig. 2 Current trajectory and interpolation for forced turn-off 

The method proposed in [4] corrects the limitations of 
its previous version [3] (limited to natural commutation 
problems) by performing two solutions at dt , one at dt −  

with the switch closed ( −Y ) and one at dt +  with the 

switch open ( +Y ). The solution then moves to time-point 
3. An extra interpolation is performed at 4 for eliminating 
numerical oscillations. The action and drawback of this 
interpolation have been explained in the previous subsec-
tion on numerical oscillations. The following solution is 
found t∆  apart at the time-point 5. An optional extra in-
terpolation can be taken at the time-point 1 to move back 
onto the original time-mesh. 

For the solution at dt +  it is assumed that +I  is equal to 

the interpolated −I . Although it may be acceptable in 
some practical cases within integration time-step limits, 
this assumption is questionable, since a discontinuity has 
occurred and the history leading to the solution at dt +  
should be different from the history leading to the solution 
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at dt − . There is no state variable continuity criterion. 
The method proposed in [5] is a variant of [4] and lim-

ited to natural commutation problems. Contrary to [4] it 
has no treatment for numerical oscillations and numerical 
snubber (RC branch in parallel with the switching device) 
circuits become mandatory. 

The algorithm presented in [6] is based on restarting 
trapezoidal integration with Backward Euler integration. 
The solution at dt −  is found again from interpolation. An 
extra halved time-step Backward Euler solution is taken 
from time-point 2 to an intermediate exploratory time-
point dt t / 2+∆  using +Y : 

t t / 2 t t / 2 td d dL L L
ti v i

2L+∆ +∆ −

∆= +  (5) 

It is known from theoretical considerations that the induc-
tor currents and capacitor voltages cannot jump between 

dt −  and dt + . Since the inductor current varies linearly, 
this algorithm takes back to dt +  the inductor voltage 
found at dt t / 2+∆ : t t t / 2d dL Lv v +∆+

= . For capacitors 

it is needed to take back current. The solution can then 
proceed to the next time-point using: 

t t t t t td d d dL L L L
t ti v v i

2L 2L+∆ +∆ + +

∆ ∆= + +  (6) 

where tdLi +
is found from interpolation and  

t td dL Li i
+ −
=  which ensures state variable continuity. A 

similar equation can be written for the capacitor. An extra 
interpolation can be taken to resynchronize with the origi-
nal time-mesh, but it is less important for non-real-time 
simulators. Numerical oscillations are automatically elimi-
nated during the reinitialization procedure and due to 
Backward Euler usage. 

The problem with the trapezoidal method shown in 
equation (1) for the inductance is that it carries a voltage 
term unrelated to the state variable. The extra term be-
comes problematic when a discontinuity is encountered. 
This is not the case with Backward Euler and that is why 
the reinitialization method of [6] can be supported mathe-
matically. It also accounts for state variable continuity. 
Using Backward Euler for the entire simulation is not re-
tainable since it truncates earlier in the Taylor series and is 
less precise. 

C. Proposed new method 

The method proposed in this paper follows the roots of 
the one in [6]. The method is illustrated in Fig. 3, which is 
showing in addition to the switch current a sample induc-
tance current trajectory.  A similar presentation can be 
made for capacitor voltage. The overall algorithm steps 
(corresponding to the shown vertical time lines) are: 
1. Find the normal time-mesh solution at t 2 t+ ∆  and 

detect that a discontinuity has occurred. 
2. Find the interpolated solution for state variables at dt  

and the new system matrix +Y . 

3. Find the exploratory solution at dt t / 2+∆  using 
equation (5). 

4. Extrapolate the solution for state variables at 
dt t / 2−∆ . The extrapolated solution for Li  is: 

 t t / 2 t t t / 2d d dL L Li 2i i−∆ +∆−
= −  (7) 

5. Move from the time-point of step 4 back to the time-
point 2 using Backward Euler: 

 t t t t / 2d d dL L L
tî v i

2L + −∆
∆= +  (8) 

6. Move from time-point 2 ( dt ) to dt t+∆  using the 
trapezoidal integration equation (6). 
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Fig. 3 New interpolation-extrapolation method 

The inductance current is fixed by using t td dL Li i
+ −
= . 

The current found from (8) is discarded since this equation 
is only used for reinitilizing voltage. It is however ex-
pected that tdLî is very close to the interpolated tdLi −

 

when t∆  is sufficiently small. 
The main difference with [6] is that instead of assuming 

a zero slope voltage between dt  and dt t / 2+∆ , a more 
realistic linear variation is taken into account by extrapola-
tion. There is also an explicit method for finding the solu-
tion for all quantities at dt + . The extrapolation is sup-
ported by the fact that linear variation must be assumed 
throughout the entire simulation within the main trapezoi-
dal integration t∆  in continuous conditions. Numerical 
oscillations are again automatically treated. 

In the actual complete implementation of this method it 
is needed to account for multiple switching conditions oc-
curing in the same time-step. The simultaneous switching 
case is accounted for by repeatedly testing switch status at 

dt  until all switch type devices are settled. As for non-
simultaneous conditions it is a matter of applying multiple 
reinitializations within the same time-step. 
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III. TEST CASES 

The new method is now demonstrated and compared 
with other methods by trying to match as closely as possi-
ble the related algorithms as explained in previous publica-
tions. All computed time-points are shown. Generally 
speaking, most methods will provide the correct same an-
swer if the integration time-step is sufficiently small. In 
fact an almost theoretical solution can be achieved by ap-
plying extremely small time-steps. Some methods will 
accumulate numerical errors when the integration time-
step is increased to decrease computer timings. The most 
difficult cases are encountered for very high switching 
frequency converters. Simultaneous switching is also a 
distinguishing competence.  

A. First test case 

The first test case is a simple load energization transient. 
The source side contains harmonics. The switch closing 
time is occurring at dt 0.014444s=  (within a time-step). 
Fig. 4 presents energization results for a t 25 s∆ = µ . Four 
methods are compared against the theoretical waveform 
for their reinitilization ability. Method 1 is the standard 
trapezoidal integration method switched into two halved 
time-step Backward Euler steps when a discontinuity is 
encountered. It does not have interpolation. Method 2 is 
based on the algorithm of [6]. Method 3 assumes that 
+ −=I I  and uses interpolation to eliminate numerical 

oscillations [4]. It is apparent from this figure that Methods 
2 and 3 are able to reinitialize and come close to the initial 
voltage peak at switch closing time within the given time-
step constraints. It is however only the New method that 
finds the best reinitialization for the state variables and is 
able to follow the theoretical solution correctly. 

Fig. 5 shows the load inductance current waveforms at 
switch opening instant on current crossing zero. The New 
method is in almost perfect superposition with the theo-
retical solution. The interpolated opening time is not the 
same for all methods even with a decreased time-step of 
10 sµ . It is apparent here that interpolating to eliminate 
numerical oscillations is similar to Method 1 and creates 
an artificial insignificant or significant voltage peak. In 
this case it is insignificant. 

B. Second test case 

The second test case is simulating the converter of Fig. 
1. It is a high frequency switching case where both current 
and voltage discontinuities are encountered. Circuit data is 
identical to the data used in [7] for both continuous and 
discontinuous operating modes. 
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Fig. 4 Inductance voltage 24v  ( t 25 s∆ = µ ) 
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Fig. 5 Inductance voltage at switch opening 

Fig. 6 ( t 0.1 s∆ = µ ) shows the continuous operating 
mode output voltage 0v . The forced commutated switch is 
modeled as an ideal switch and the diode has a 0.7V turn-
on voltage and becomes an open circuit when turned-off. 
The expected theoretical (from symbolic computations [7]) 
mean value voltage output is -24V. The simulation starts 
by initializing the capacitor voltage to its expected mean 
value voltage in order to achieve a faster steady-state. 
Method 1 is not shown here since it is unable to provide a 
simultaneous switching solution and will fail completely. 
It appears that due to the repetitive reinitilization and re-
lated errors, Methods 2 and 3 find a different steady-state. 
The actual mean value voltage found by the New method 
is 23.9875−  (an error of 0.05%). Methods 2 and 3 find 

24.315−  and 23.365−  respectively. The New method is 
also able to closely follow the theoretical envelope and the 
superposition makes both waveforms almost indistinguish-
able. If the time-step is increased to 1 sµ  then the New 
method’s error is only 4%. The apparent modulation effect 
of some methods is due to the initial transients and errors 
in reinitialization which cause errors in switching instants. 
It is impossible to achieve absolutely perfect steady-state, 
especially at such high frequencies, but the New method is 
the one that shows the best performance and enters steady-
state much faster. Fig. 7 ( t 0.1 s∆ = µ ) shows the induc-
tance current. The theoretical minimum value is 9A. The 
New method finds 8.9958A. It is noticed here that Method 
3 does not support current continuity. 

The discontinuous mode of operation is more complex 
due to the increased number of reinitializations. Fig. 8 
( t 0.1 s∆ = µ ) compares currents at switching point. The 
New method is very close to the theoretical solution. 
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Fig. 6 Converter output voltage 0v− , continuous mode 
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Fig. 7 Converter inductance current, continuous mode 
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Fig. 8 Converter inductance current, discontinuous mode 

C. Third test case 

A simple diode bridge rectifier (Fig. 9) is used here to 
test for natural commutation. Diodes are modeled as ideal 
switches (0.7V turn-on). It is shown in Fig. 10 that Method 
3 is less precise and noisy at the discontinuity time-point. 
Method 2 cannot provide a continuous transition due to the 
fact that both closely linked inductance voltage and capaci-
tance current must be reinitialized at the same time-point. 
The New method offers the best performance. In the case 
of Method 1, its apparent precision is related to an averag-
ing effect in the computation of the capacitor voltage and 
its other quantities remain noisy at the discontinuity treat-
ment time-point. 

D. Fourth test case 

This test case is created to demonstrate the multiple si-
multaneous switching capabilities of the new method using 
the test circuit of Fig. 11.   Fig. 12 demonstrates that the 
current is instantaneously switched over from IGBT1 
( G1i ) to diode 3 ( D3i ). When the current is reversed it is 

instantaneously switched from diode 3 to IGBT3 ( G3i ). 
The IGBT currents G1i  and G4i , and the diode currents 

D2i  and D3i  are perfectly superposed. The IGBTs and the 
diodes are modeled as ideal switches. The diodes conduct 
when the forward voltage drop exceeds 0.7V.  
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Fig. 9 Diode bridge rectifier 
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Fig. 10 Capacitor voltage  (diode bridge rectifier) 
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Fig. 11 PWM inverter 
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Fig. 12 IGBT and diode waveforms (New method) 

Fig. 13 shows the results from the New method for uni-
polar voltage switching using t 10 s∆ = µ . The almost per-
fect steady-state pattern demonstrates high precision. A 
very close match is also found using 20 sµ and 30 sµ  time-
steps. 

It has been observed that one possible cure to Method 1 
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for detailed PWM simulation is its programming with si-
multaneous switching: the solution at a given time-point is 
restarted (not advanced to the next time-point) until no 
new switch status changes are found. Furthermore, the 
initial solution can be saved in waveform data to show an 
instantaneous transition. It is found that this approach 
(Method 1+) can provide acceptable results when suffi-
ciently small time-steps are used. 
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Fig. 13 PWM with unipolar voltage switching 

E. Fifth test case 

This test case is for simulating a simple 6-pulse dc con-
verter (for a 250kV dc voltage) with equidistant firing 
scheme. The almost perfectly periodic dc waveform found 
by the New method using a t 50 s∆ = µ , is shown in Fig. 
14. Fig. 15 shows the same simulation using t 10 s∆ = µ  in 
Method 1. In addition to being less precise, this method 
shows switching spikes related to current discontinuity.  
Better precision is achieved using the previously proposed 
Method 1+. It is remarkable that the New method, due to 
its interpolation scheme, is able to calculate more precisely 
using a larger time-step. 
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Fig. 14  6-pulse dc converter voltage (New method) 

75 80 85 90 95 100
2.3

2.4

2.5

2.6

2.7

2.8

2.9

3
x 10

5

t (ms)

(V
)

 

Fig. 15 6-pulse dc converter voltage (Method 1) 
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Fig. 16 6-pulse dc converter voltage (Method 1+) 

IV. CONCLUSIONS 

A new method for simulating discontinuous power elec-
tronic circuits has been proposed. The new method is 
based on reinitialization through interpolation and extrapo-
lation. It is based on and theoretically supported by the 
assumption of linear variation of quantities within the main 
trapezoidal integration time-step during continuous condi-
tions. The new method has been shown to provide superior 
results for the demonstrated cases: it is more precise and 
less sensitive to integration time-step increase.  

With sufficiently small time-steps, most methods can 
achieve acceptable precision even without interpolation. 
The simultaneous switching condition and numerical oscil-
lations can however remain problematic in some circuits. 
These considerations directed to an extra method (Method 
1+) proposed in this paper. It is based on adding the simul-
taneous switching function to an existing technique for 
eliminating numerical oscillations. Although less precise, 
it can become a viable alternative and requires a signifi-
cantly reduced programming effort. 
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