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Abstract - The increase in electrical energy demand on the 
northern part of Puerto Rico, along with the fact that most of 
the generation is located in the southern part of the island 
forces the Puerto Rico Electric Power Authority (PREPA) to 
depend heavily on its transmission system capacity to transfer 
real and reactive power.  The supply of reactive power to the 
north is essential to improve PREPA’s margin of voltage 
stability when exposed to major transmission line outages.  To 
face this situation PREPA is installing five (5) new 115 kV 
capacitor banks, 43.34 MVARs each, in the northern part of 
the island. 
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Figure 1.  Map of Puerto Rico including major loads and electric 
power generation locations. 

Two of these new capacitor banks will be installed on the 
same 115 kV bus (back-to-back operation) at the Sabana 
Llana Transmission Center.  This Station serves many 
sensitive industrial loads.  Due to the size of the new capacitor 
banks, a conventional breaker should not be used since the 
rate of change of inrush current exceeds its capacity.  The 
Planning & Research Division of PREPA performed a series 
of ATP (Alternative Transient Program) simulations to 
evaluate the use of synchronous closing (zero voltage closing) 
breakers to control each of the capacitor banks on the back-
to-back configuration.  This evaluation not only guarantees a 
safe operation of both capacitor banks but also eliminates a 
potential power quality problem by minimizing the transient 
distortion in the voltage waveform during energization of the 
capacitor banks. 

 

The installation of capacitor banks has been the most 
efficient and practical solution used by PREPA to 
complement the generation of reactive power in the 
northern part of the island.  Five (5) new 115 kV capacitor 
banks, 43.34 MVARs each (Wye grounded), are being 
installed in major load transmission centers (TC) of the 
northern part of the island.  These new capacitor banks will 
increase the reactive power dynamic reserve of the 
generating units in the north and improve the power factor 
of the system.  As a consequence the generating units in the 
north will operate at a higher power factor increasing the 
margin of system voltage stability under contingency 
conditions of major transmission lines.   

 
Keywords – Inrush current, synchronous closing, power quality, 
back-to-back operation 

I. INTRODUCTION  

PREPA is a public utility responsible for the generation, 
transmission and distribution of electrical energy in Puerto 
Rico.  The installed generation capacity of PREPA is 4,922 
MW.  Of this total capacity approximately 3,500 MW 
(71%) is installed on the southern part of the island.  On 
the other hand, the northern part of the island has the 
largest concentration of industries, pharmaceuticals and 
population.  This situation, along with the fact that Puerto 
Rico is an island, forces our transmission system to play a 
vital role in the transfer of real and reactive power from 
south to north.  Our transmission network is composed of a 
grid of 230 kV and 115 kV lines.  Figure 1 shows a general 
map of the island with the distribution of major loads and 
electric power generation.  

Also, the integration of these new capacitor banks will 
significantly decrease the reactive power losses in major 
transmission lines running from south to north, reducing 
the reactive power demand of the major generating units 
located in the south.  The size and location of the new 
capacitor banks were optimized based on power flow 
analysis techniques to minimize the real and reactive power 
losses of the transmission system [1].    

Two of these new 115 kV capacitor banks will be 
installed on the same 115 kV bus (back-to-back operation) 
at the Sabana Llana TC.  This transmission center is one of 
PREPA’s most important load centers.  Many sensitive 
industrial, residential and commercial loads are supplied 
from Sabana Llana TC.  It is also a major link between the 
north and south electrical systems.   

The integration of these two new banks at Sabana Llana 
TC resulted in a very interesting and intensive study, not 
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only because of the back-to-back operation, but also 
because there are existing 115 kV capacitor banks at 
nearby stations. 

II. CAPACITOR BANK SWITCHING BASIC THEORY 

Figure 2 shows a simplified circuit of an electrical 
system interacting with two capacitor banks in a back-to 
back configuration.  
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Figure 2.  Simplified LC circuit with back-back configuration of 
capacitor banks 

In general, the addition of an isolated shunt capacitor 
(closing S1 in Figure 2) to a predominantly inductive 
circuit, like an electric power system, results in a transient 
overvoltage at a natural frequency given by the following 
equation [2]: 

fnatural  (Hz)     =  
12

1
CLs ��

 (1) 

Ls  =  equivalent system inductance (mH) 
C1  = Capacitance of bank 1 (�F)   
 
This transient overvoltage can theoretically reach peak 

phase to ground values of 2.0 per unit and will oscillate in 
the system depending on the damping present [2].  

The energizing current will oscillate at the same natural 
frequency and its peak value will depend on the driving 
voltage (system voltage at time of closing), the voltage 
trapped in the capacitor and the surge impedance of the 
circuit [2].   

I peak (Amps)  =  
Zo
VcVs )0(1�  = 

1

)0(1

C
Ls

Vc�Vs   (2) 

Vs = peak value of system voltage at time of closing 
 
Vc1(0)  = peak value of voltage  in capacitor bank 1 
               prior to energization 

Zo =  
1C

Ls  = Surge impedance  

The natural frequency of the transient phenomena is 
generally greater than the system frequency (60 Hz in our 
case), hence the system voltage (Vs) may be considered a 
constant since its magnitude practically does not vary 
during the transient period.  The amount of damping 

present in the circuit will determine the duration of the 
oscillation in the system.  

In the particular case of a back-to-back energization of 
capacitor banks, one bank is energized near to another 
bank that was previously energized (Closing S2 with S1 
already closed in Figure 2).  The inductance limiting the 
inrush current in this case is the sum of the bus inductance, 
the inductance associated with the capacitor banks and the 
inductance of any aerial line or cable connecting them [3] 
(Leq in Figure 2).  The value of this equivalent inductance 
is normally in the order of microHenries (�H).  As a result, 
in the back-to back operation there will be a huge exchange 
of charge between the two capacitors during the transient 
period.  The natural frequency and inrush current varies 
from the isolated capacitor bank case since capacitors 1 
and 2 are now effectively in series and the inductance 
present during this transient is the equivalent inductance 
described before.   

fnatural  (Hz)     =
CeffLeq ��2

1  (3) 

Leq = equivalent  inductance; sum of inductances 
associated with bus, banks and lines or cables connecting 
both  capacitor banks (�H). 

 
Ceff = effective capacitance; Series combination of 
capacitance of banks 1 and 2 (�F).   
 

The energizing current flowing from capacitor bank 1 
into capacitor bank 2 will oscillate at the same natural 
frequency and again its peak value will depend on the 
driving voltage (capacitor bank 1 voltage at time of 
closing), the voltage trapped in the capacitor bank 2 and 
the new surge impedance of the equivalent circuit.   

 I peak (Amps)  =  
Zo
VcVc )0(21�  = 

Ceff
Leq
VcVc )0(21�      (4) 

Vc1 = peak value of bank 1 voltage at time of closing 
 
Vc2(0) = peak value of voltage in bank 2 prior to  
              energization 

Zo  = 
Ceff
Leq  = Surge impedance  

The system will also act to charge bank 2 but in a much 
smaller contribution than bank 1 does.  Again, the natural 
frequency of the transient phenomena is greater than the 
system frequency (60 Hz in our case) hence the system 
voltage (Vs) may be considered a constant since its 
magnitude practically does not vary during the transient 
period.   

It is important to notice that the new surge impedance 
(Zo) is much smaller for the back-to-back operation than 
for the energization of an isolated bank.  This is true since 
Leq << Ls and Ceff is smaller than C1.  With these changes 
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there will be a huge inrush current flowing between the 
banks at a much higher natural frequency.   
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This high frequency – high magnitude transient current 
can produce excessive mechanical stresses to system 
components.  For circuit breaker applications, ANSI 
Standard C37.06-2000 establishes rated inrush currents and 
rated inrush current frequency for back-to-back operation 
of capacitor banks [4]. 

According to ANSI Standard C37.06-2000: “The rated 
inrush current peak is the highest magnitude of current that 
the circuit breaker shall be required to close at any voltage 
up to the rated maximum voltage.  The rated transient 
inrush current frequency is the highest frequency that the 
circuit breaker shall be required to close at 100% rated 
back-to-back capacitor switching inrush current rating”.   

“For applications below 100% of rating, the product of 
the inrush current peak and the natural frequency shall not 
exceed the product of rated inrush current peak and rated 
transient inrush current frequency”. This product 
establishes the maximum rate of change of inrush current 
with respect to time (di/dt in Amperes/�seconds).  Figure 3.  On

Traditional techniques used to minimize the transient 
overvoltages and inrush currents include metal oxide 
varistor (MOV) arresters, current limiting reactors and 
preinsertion resistors.  A MOV arrester clips the transient 
overvoltage to a certain level while discharging the surge.  
A current limiting reactor increases the surge impedance 
and as a result lowers the inrush current of the capacitor 
bank and a preinsertion resistor damps the oscillations of 
the transient wave [5]. 

In the ba
there would
separated on
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are: 

 

C1 = 9.39

C2 = 9.39
A more recent and efficient method called synchronous 

closing or Zero voltage closing (ZVC) performs the 
energization of the capacitor bank at a specific point in the 
voltage waveform.  Theoretically, by measuring the bus 
voltage and using a control algorithm, the synchronous 
closing breaker can energize the capacitor bank (Wye 
grounded) when the voltage is at zero potential (Zero 
voltage closing breakers).  This would minimize both the 
transient overvoltage and the related inrush current [6]. 

Leq = 178
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III. CASE STUDY 

Figure 3 shows a simplified one line diagram of the 
study area.  In addition to the two new 43.34 MVARs 115 
kV capacitor banks in Sabana Llana TC, there is an 
existing 31.7 MVARs 115 kV capacitor bank at Canóvanas 
TC (7.4 miles away from Sabana Llana TC).  There is 
another 43 MVARs 115 kV existing capacitor bank 10 
miles from Sabana Llana TC at the Hato Rey TC.  A future 
43.34 MVARs 115 kV capacitor bank will be installed at 
Berwind TC (3.3 miles away form Sabana Llana TC) 
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Figure 8.  Capacitor bank 1 phase "A" current during back-to-

back energization at system zero voltage.   
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Figure 9.  Capacitor bank 2 phase "A" current during back-to-
back energization at system zero voltage.   
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Figure 11.  Capacitor bank 1 phase "A" current during back-to-

back energization at 1 millisecond after system zero voltage.   
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Figure 12.  Capacitor bank 2 phase "A" current during back-to-

back energization at 1 millisecond after system zero voltage. 
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Figure 10.  Phase voltages distortion in Sabana Llana 115 kV bus 

during back-to-back energization at system voltage zero. 

 Seconds x10-3 
Figure 13.  Phase voltages distortion in Sabana Llana 115 kV bus, 

back-to-back energization at 1 millisecond after zero voltage. 
  

Table II summarizes the results of the synchronous 
closing energization of capacitor bank 2 during the back-
to-back operation. This table presents results of 
energization at system voltage zero, energization at plus or 
minus one (1) millisecond of system voltage zero and plus 
or minus two (2) milliseconds of system voltage zero. 
Again, a conventional breaker back-to-back rated values of 
inrush current and frequency according to ANSI Standard 
C37.06-2000 are included for comparison. 

The control systems and mechanisms related with 
synchronous closing technology typically have a tolerance 
of one millisecond (+/-1 msec).  This situation was also 
evaluated using ATP [7] and its graphical preprocessor 
ATPDraw [8] to guarantee a safe and reliable operation of 
both breakers controlling the banks.  Figures 11 and 12 
show inrush current and frequency for both banks during 
back-to-back energization at one (1) millisecond after 
system voltage zero.  Figure 13 shows the phase voltages 
distortion at Sabana Llana TC during this operation.      
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Table II. Rate of change of inrush current with respect to 
time for breakers of both capacitor banks during 
energization of bank 2 using synchronous closing 
technology.  

 

Peak  
Current 

Frequency Rate of change 
di/dt 

 

(Amps) (kHz) (Amps/�sec) 
    

Closing at System 
Zero Voltage  

   

Breaker - Bank 1  400 5.5 13.6 
Breaker - Bank 2  400 5.5 13.6 

    
Closing at  +1msec 

 of Zero Voltage  
   

Breaker - Bank 1  4,800 5.5 166 
Breaker - Bank 2  5,300 5.5 184 

    
Closing at  -1msec 
 of Zero Voltage  

   

Breaker - Bank 1  5,200 5.5 180 
Breaker - Bank 2  5,200 5.5 180 

    
Closing at  +2msec 

 of Zero Voltage  
   

Breaker - Bank 1  9,150 5.5 315 
Breaker - Bank 2  9,700 5.5 335 

    
Closing at  -2msec 
 of Zero Voltage  

   

Breaker - Bank 1  9,450 5.5 327 
Breaker - Bank 2  9,520 5.5 329 

    
ANSI  C37.06-2000 
Conventional Breaker 

 
16,000 

 
4.25 

 
427 

    

VI. CONCLUSIONS 

� A conventional breaker should not be used to control 
the capacitor banks in the back-to-back configuration at 
Sabana Llana TC since the rate of change of inrush current 
may exceed the breakers capacity when closing near peak 
system voltage. 

 
 � The synchronous closing technology limits the rate of 

change of inrush current with respect to time allowing a 
safe, reliable and flexible operation of the new capacitor 
banks at Sabana Llana TC. 

 
� The synchronous closing technology eliminates a 

potential power quality problem by minimizing the 
transient distortion in the voltage waveform during 
energization of the capacitor banks.   

 
 
� The results of the simulation prove that even 

energizing capacitor bank 2 during the back-to-back 
operation at one (1) millisecond (+/- 1 msec) of system 
voltage zero (tolerance of the synchronous closing control 
system and mechanism), we guarantee a safe operation of 
both capacitor banks.   

 
�   Although synchronous closing technology with a 

tolerance  of two (2) milliseconds (+/- 2msecs) also results 
in an safe operation for both breakers in our case study 
(di/dt < 427 Amps/�sec), there is technology today that 
offers better synchronous closing accuracy (+/- 1 msec).  
This value of tolerance for the control system (+/- 1 msec) 
is preferred since it results in a lower rate of change of 
inrush current and less distortion in the voltage waveform.  
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