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 Abstract-- The paper deals with the computation of very fast 

transient overvoltages (VFTO) in transformer windings. The 
applied algorithm uses a combination of the Multi-Conductor 
Transmission Line Model (MTLM) and the Single-Transmission 
Line Model (STLM). By means of the STLM, the voltages at the 
end of each coil are calculated. Then, these values are used in the 
MTLM to determine the distributed overvoltages along the 
turns. Also, this method significantly reduces the number of 
linear equations that needs to be solved for each frequency to 
determine the required voltages in frequency domain.  

The algorithm uses a modified continuous Fourier 
transformation that provides an accurate time domain 
computation. As an example, the inter-turn voltage distributions 
for two 500 kV auto-transformers are computed and compared 
with measurements provided by other publications.  
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Overvoltages, Switching surges, Transformer 

I.  INTRODUCTION 
WITCHING operations in a gas insulated substations 
(GIS) and lightning impulses are known to produce very 
fast transient overvoltages (VFTO) which are dangerous 

for the transformer and motor insulation. Also, in medium 
voltage systems where vacuum circuit breakers [2,3] are used, 
reignition causes high-frequency oscillation which can be 
dangerous because of their short rise time. Under special 
circumstances the terminal overvoltages can arise close to the 
transformer BIL. Another problem is the external resonance 
which occurs when the natural frequency of the supplying  
cable matches the natural frequency of the transformer [7]. 
Most of the time, the greatest problem is the internal 
resonance which occurs when the frequency of the input surge 
is equal to some of the resonance frequencies of the 
transformer. These overvoltages are characterized by a very 
short rise time. The experience shows that VFTOs within GIS 
can be expected to have even a rise time of 0.1 µs and an 
amplitude of 2.5 p.u.  [1]. Most of the time, resonant 
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overvoltages can cause a flashover from the windings to the 
core or between the turns. The inter-turn insulation is 
particularly vulnerable to high-frequency oscillation and 
therefore the study of the distribution of inter-turn 
overvoltages is of essential interest. The VFTOs produced by 
switching in GIS depend not only on the connection between 
the GIS and transformer, but also on the transformer 
parameters and type of the winding.  
This paper deals with the calculation of the inter-turn 
overvoltage distribution in a shell type auto-transformer. Two 
transformers with different parameters are studied, and our 
calculations are verified by some measurements and 
calculations published by other authors. 

II.  APPLICATION OF THE TRANSMISSION LINE THEORY 
When every turn in a coil is represented as a transmission 

line, then the propagation phenomena in transformer coils can 
be fully described by making a use of the modified telegraphs 
equations: 
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In (1), Vt and It  are the voltage and current vectors. The 

order is equal to the number of turns in a coil. L and C  are 
square matrices of the inductances and capacitances in the 
coil, while E0 and C0 denote the excitation function and 
capacitance from one turn to the static plate. The last term in 
the second equation represents the static induced voltage.  

The matrix C  is formed as follows: 
Ci,i – is a capacitance of turn i to ground and sum of the all    
        other capacitances connected to turn i, 
Ci,j – is a capacitance between turns i and j taken with the   
        negative sign (i≠j) 
 

 
Fig. 1. Turns and coils of the transformer winding 

 
The matrix L  is calculated through the capacitance matrix 
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where the velocity of wave propagation vs  is calculated as 
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s
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=
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where c is the speed of light and ε r  is the dielectric constant 
of the transformer insulation.  We have to point out that the L 
matrix in (2) takes into account the mutual inductances within 
a specific coil. 
 By solving (1), the distribution of voltages and currents can 
be calculated in a particular coil. This is not very practical 
because the applied model does not take into account the 
dielectric and conductor losses due to skin effect. 
Furthermore, all coils and turns should be considered and this 
leads to a large number of equations and solving the problem 
requires very large matrix operations.  
Therefore, the problem will be solved in two steps by 
combination of the STLM and MTLM. Both methods are 
originally derived from the telegraphs equations and the 
comparison between the methods is described in [4]. Firstly, 
each coil is considered as a single transmission line with the 
following equations for the i-th coil: 
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where zi is the characteristic impedance of a turn and Γi is the 
propagation constant that takes into account the dielectric and 
conductor losses as shown in the Appendix. The description 
of the coils and turns is shown in Fig. 1. The 
constants Ai and Bi  can be calculated by equating the voltages 
and currents between two adjacent coils: 
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where Ni and Nc denote the number of turns in the i-th coil and 
the number of coils respectively, and  a is the length of a 
single turn in a coil.  
The number of systems of linear equations that should be 
solved is equal to the number of coils Nc in the transformer 
winding.  
The last two equations are provided by the first and the last 
coil (which is earthed), V E V NN N1 00 0( ) , ( )= =

c c . The 

system of equations (5) can be represented in matrix form:    
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The description of the matrix elements is given in the 
Appendix. In this way we can determine the constants Ai  and 
Bi , and the voltages and currents at the beginning of each 

coil. This represents the STLM. Its advantage is that the whole 
length of the coil is considered as one line and the parameters 
mentioned above are computed by solving a minimal number 
of equations.  

The second step, which actually is the MTLM uses the 
determined voltages in frequency domain from the STLM. 
From (1) it follows that the relation between the voltages and 
currents in the i-th coil can be expressed as: 
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The system of equations (7) is used to compute the voltages 
and currents in the turns of a particular coil. In equation (7) 
At  and Bt  are vectors which can be computed from the 
boundary conditions in the same way as in the STLM, and ki  
is a vector that consists the capacitive voltage distributions. In 
a similar way, the matrix equation from where the vectors 
At and Bt  can be determined is: 
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The order of the matrix in (8) that represent the system of 
equations is equal to twice the number of turns in the observed 
coil. This significantly helps especially when we deal with 
large number of linear equations which must be solved for 
each frequency.  
Matrix equation (8) must be solved for each step frequency by 
providing the voltages at the beginning of each coil which 
were previously determined by the STLM. The inter-turn 
voltage is defined as the difference between the voltages of 
two adjacent turns in a coil: 
 

δV V x V xt i t i t i, , ,( ) ( )= − +1                         (9) 
 

where Vt i, is the voltage in the i-th turn of the studied coil. 
 

III.  FREQUENCY ANALYSIS 
One of the major problems when solving the wave 

equations directly in time domain is that the parameters of the 
line, particularly the conductor resistance and inductance are 
frequency dependent. A detailed approach of the general 
application of telegraphic equations for multi-conductor 
transmission lines can be found in [8]. But this method does 
not take into account the frequency dependency of the 
transmission line parameters. Therefore, the equations must be 
solved in the frequency domain. When the transformer is 
stressed by a sinusoidal voltage, the source function can be 
expressed as: 

 
E t E tp0 0( ) sin( )= ω                           (10) 

The inter-turn voltages in frequency domain are calculated by 



multiplying the transfer function with the source function 
according to Fig. 2, 
 

δ ω ω ωV j H j E j( ) ( ) ( )= 0                        (11) 
 

 
Fig. 2. Frequency domain analysis 

 
From (11) it can be seen that the transfer function 
H j( )ω actually is equal to the inter-turn voltage when the 
input is unity. This approach is used to calculate the transfer 
function. The time domain results can be calculated either by 
applying convolution or inverse Fourier transformation. 
 

 
Fig. 3. Algorithm for computation of inter-turn overvoltages 
 
The modified Fourier transformation is defined as: 
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where the interval [ ]−Ω Ω, ,  the smoothing constant b  and the 
step frequency length  dω  must be chosen properly in order 
to provide an accurate time domain response [5]. The 

modified transformation requires the input function E t0 ( )  to 
be filtered by an exp( )−bt  window function. The algorithm of 
the computation is described in Fig. 3.   

IV.  TRANSFORMER DESCRIPTION 
The computation of the inter-turn voltage distribution is a very 
delicate task and strongly depends on many transformer data 
such as the type and dimensions of coils and turns, dielectric 
parameters as well as the influence of the environment. This is 
the reason why the exact computation of the capacitances, 
inductance and transformer losses is difficult to do. 
Furthermore, when studying the VFTOs, a small change in the 
parameters can cause significant difference in the results.  
 

TABLE I 
TRANSFORMER DATA 

 

 Mean turn 
length [m] 

Turns in a 
coil 

Number of 
coils 

vs [m/�s] 

TR A 7.6 22-50 10 177 
TR B 6.83 17-23 12 184 

 
 

 
Fig. 4. Description of the transformer coils 

 

 
Fig. 5. Static voltage distribution 
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Fig. 6. Computed static voltage distribution 

 



 
Fig. 7a. Measurements of inter-turn voltage distribution of transformer A in 
the first coil [6] 

 

 
Fig. 7b. Measurements of the inter-turn voltage distribution of 1-2 turn  for 
transformer A [6] 
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Fig. 8a. Computed inter-turn voltage distribution of transformer A in the first 
coil 
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Fig. 8b. Computed inter-turn voltage distribution of turn 1-2 for     transformer 
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This implies that these kinds of studies require exact data 
parameters in order to provide more accurate computation. In 
this work two similar 500 kV auto-transformers are studied. 
The differences between both transformers are shown in   
Table I.   
The transformer coils are tilted as shown in Fig. 4. The 
capacitances between the coils are calculated by 
approximating the coils as plane capacitors and taking into 
account their mean dimensions. In this way the capacitances 
between the coils and between the coil and ground are found 
(see Fig. 5), and the capacitive voltage distribution is 
determined. Also, the capacitance matrix C  is derived by 
means of the coil-to-coil and coil-to-ground capacitances.  

The capacitive voltage distribution, which is the ratio 
between any coil voltage Ui and the input voltage E0 shows 
how the voltage is distributed among the coils. Thus, the 
voltage at i-th coil varies around the value (ki+ki+1)/2. The 
computation for both transformers is displayed in Fig. 6. The 
MTLM takes into account the static voltage distribution. 

V.  RESULTS AND COMPARISON WITH EXPERIMENT 
The calculations are done to two transformers for which the 
measurements are published in [4,6]. For Transformer A, a 
single sinusoidal pulse of 2 MHz and amplitude of 15 V is 
used. Transformer B is excited by a double sinusoidal pulse of 
1.6 MHz and amplitude of 1 V. The frequency of the defined 
pulse excitations are the resonant frequencies and are 
determined roughly by: 

f
v
lp
s=                                    (13)     

where l is the length of a specific coil. Fig. 7 and Fig. 8 show 
the measured and computed inter-turn voltages in the first coil 
and in some other coils. All distributed overvoltages for the 
first coil of transformer A are summarized in Fig. 9. 
In Fig. 10 and Fig. 11, the computed overvoltage distributions 
in the transformer B are presented. The measurements for the 
first coil of transformer B are published in [4]. Despite the 
good agreement of the amplitudes and wave forms in the 
transformer B, the wave forms in the transformer A show 
slight deviation from the measured wave forms, probably 
because not enough data are available for this transformer at 
the time when the calculations were performed. Especially the 
exact number of turns in some coils and the dimensions of the 
coils in the transformer were not known. The computations of 
transformer B show good match with the computations and 
measurements shown in [4]. We studied the inter-turn 
overvoltages in each coil and it was shown that the first and 
the forth coil show most severe overvoltages. Fig. 10 and Fig. 
11 show clearly the travelling wave phenomenon in the turns.  
The dielectric strength of the inter-turn insulation should 
withstand the lightning impulse voltage which for 500 kV 
transformer is approximately 1300 kV. The inter-turn voltage 
caused by this impulse voltage is about 1.5 % of this value. 
So, the inter-turn surge voltage that the insulation can 
withstand is 19 kV. Our study shows that the maximal 
amplitude of the computed and measured intern-turn 
overvoltages for the applied resonant frequencies are 

approximately 5 % of the amplitude of the source voltage. 
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Fig. 9. Computed distribution of inter-turn voltages for the first coil of 
transformer A 
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Fig. 10. Computed distribution of inter-turn voltages for the first coil of 
transformer B 
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Fig. 11. Computed distribution of inter-turn voltages for the fourth coil of 
transformer B 
 



This means that for a rated transformer voltage of 500 kV, 
the inter-turn overvoltages are (500 2 3/ ⋅ 0.05=20.37 kV). 
When the transformer is stressed by a higher overvoltage for 
example lightning impulse or GIS switching surges, this value 
can be even higher. The measured inter-turn voltage 
distribution versus frequency normally possesses more 
resonant frequencies. Sometimes they can reach value up to 
20 % of the rated voltage which might be rather dangerous 
and definitely can cause an inter-turn flashover. 

VI.  CONCLUSION 
The study of VFTO which occur during the switching of the 
network with GIS, or other phenomena which cause steep-
fronted surges is important for insulation coordination. 
Especially it is important to find the resonance points which 
depend on the characteristic of the transformer. In this work 
the resonance of the winding is roughly determined from the 
speed of surge impulse and the length of a coil. The MTLM 
and STLM method can be used with full success and there is a 
good agreement between the measured and calculated inter-
turn distributions. However, the computed characteristic of the 
inter-turn voltage with respect to the frequency most of the 
time shows a slight deviation from the actual characteristic. 
Therefore, before applying this method it is recommended to 
provide the actual (measured) frequency characteristic of the 
inter-turn voltage distribution from where the resonant 
frequencies and the amplitude of the inter-turn overvoltage 
can be observed. Then, for each resonant frequency the 
voltage distribution along the winding can be calculated. 
Despite the use of Discrete Fourier Transformation which 
showed some instabilities in the time domain solution, the 
modified Fourier Transformation was found to be very stable 
for these studies. Due to lack of data, our analysis does not 
take into account the mutual inductances between the coils, 
but only the mutual inductances between the turns in the coils. 
It is not known to us if the method is so far applied for other 
types of windings. Our opinion is that the method can be 
applied for all types of transformer windings.   
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