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Abstract  -- The design and stability assessment of a new 

robust nonlinear fuzzy controller that may be applied in the 
control loops of HVDC systems is presented.  A new simplified 
nonlinear dynamic model is developed for HVDC systems that 
can be used to design the controller.  The proposed model 
decomposes into several linear systems around important 
equilibrium points.  These local linear models describe the plant 
dynamic behavior at different operating points. An evaluation is 
performed by simulation using the Cigré benchmark HVDC 
model. The simulation results show that, compared to 
conventional controllers, the new controller gives an 
improvement in AC/DC/AC system performance during severe 
faults. Stable behavior is shown to be obtained during a sudden 
change in effective short ratio (ESCR) when using the proposed 
controller within a very weak AC/DC system.  This is compared 
with the operation of a conventional controller under similar 
conditions, during which the HVDC-system becomes unstable.  

 
Keywords: HVDC transmission control, Power System 

Dynamic modeling, Fuzzy System. 

I.  INTRODUCTION 
IGH Voltage Direct Current (HVDC) technology finds 
application in the transmission of power over long un-

broken overland distances, significant underwater distances, 
and in the interconnection of separate, or partitioned, AC 
systems.  HVDC systems are likely to continue to be deployed 
in the future, especially as technological improvements are 
making them cost competitive with alternative AC schemes at 
decreasing power levels; and their unique control characteris-
tics can be exploited to enhance the capacity, level of inter-
connection, and availability of existing AC systems. 
 The converter-bridge controller used for HVDC transmis-
sion is designed to maintain a specific power transmission 
characteristic.  In an AC/DC power system, the fast-acting 
converter controller allows hierarchical control of the system 
following a system disturbance. Conventional HVDC con-
verters currently employ PI type controllers that make use of a 
fixed gain structure which is optimized for operation at rated 
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conditions.  A challenge for future designers is to incorporate 
sufficient flexibility within the controller to allow the control 
strategy to be adjusted for different operating conditions. 

The tuning of HVDC converter controls involves making a 
compromise between the speed of response and stability dur-
ing small disturbances on the one hand, and robustness under 
large signal disturbances due to faults or switching on the 
other hand.  Furthermore, the highly nonlinear nature of the 
control loops necessitates the careful selection of control con-
stants to accommodate a range of operating conditions. 

The AC/DC interaction becomes more sensitive to distur-
bances as the effective short-circuit ratio (ESCR) of the AC 
system interface falls lower and lower [1], and the correct 
adjustment of control constants for good overall performance 
becomes much more difficult.  To circumvent the above prob-
lem, extensive research has been carried out in the area of 
HVDC control.  However, the advanced techniques available 
in DC adaptive control literature are difficult to apply in prac-
tical applications because of the absence of insight into per-
formance with large disturbances, where the adaptive control 
may be not only ineffective but may degrade the performance 
rather than enhance it [2],[3].   

A gain scheduling adaptive control strategy has been tried 
in [4] where the effect of large disturbances has been taken 
into account.  In [5], the advantages of automatic continuous 
fine tuning are combined with predetermined gain scheduling 
in order to achieve robustness during large disturbances.  A 
robust coordinated control scheme for a parallel AC/DC sys-
tem is proposed in [6].  The paper describes the derivation 
and validation of a coordinated controller employing on-line 
identification of the AC/DC system. Fuzzy-logic-based tuning 
of the controller parameters for the rectifier side current regu-
lator, and inverter side gamma controller in a HVDC system 
is introduced in [7-9].  In these, error signals and their de-
rivatives are used as inputs to the fuzzy system, and give op-
timum system performance under various normal and abnor-
mal conditions.  To obtain good performance under various 
disturbance conditions, the fuzzy system parameters (number 
of fuzzy IF-THEN rule and their membership functions) need 
to be adjusted in a trial and error manner. 

 In this paper, a different approach to designing a suitable 
controller for HVDC systems is first considered. As shown 
later, the new controller only uses output variables.            
Next, HVDC system modeling is presented which is based on 
the Cigré benchmark model. In section III, a suitable nonlin-
ear dynamic model is developed for the HVDC system that 
can be decomposed into linear systems around its equilibrium   
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points.  Section IV considers the method of robust nonlinear 
fuzzy control design using the Takagi-Sugeno fuzzy model.     
Stability conditions of both fuzzy models and fuzzy control 
systems are given.  The simulation results are shown in sec-
tion V.  Finally, concluding remarks are drawn in section VI. 

II.  HVDC SYSTEM MODELING   
To date, a wide variety of HVDC converter control strate-

gies have been tested and optimized with the help of various 
digital programs.  Great interest in HVDC-system simulation 
has led to the establishment of a Cigré benchmark model 
[10], [11] which is used here as a test system [11]. The se-
lected short-circuit ratio (SCR) and the effective short-circuit 
ratio (ESCR) for the Cigré benchmark model are typical of a 
weak system.  The combination of the weak inverter system, 
the DC-side resonance approaching fundamental frequency, 
and the AC-side resonance near the second harmonic make 
this system particularly onerous for DC control operation.   

The proposed dynamic model is derived from the basic sys-
tem configuration shown in Fig. 1.  In this figure, the rectifier 
and inverter AC systems are represented by Thevenin AC 
equivalents, i.e. a constant AC voltage source behind a short-
circuit impedance.  This representation is most commonly 
assumed for the investigation of large-disturbance and small-
disturbance voltage instability in weak AC/DC systems [12-
14].  In [15] the time frame for model validity is given as ap-
proximately several hundred milliseconds.  

A.  Power and voltage equations for HVDC system  
Based on the per-unit method presented in [16], and by se-

lecting the nominal DC power (PdN) and ideal open circuit 
DC voltage (VdoN) as base power and base voltage, respec-
tively, the following equations may be derived: 
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where a, xc, α, γ, V, Vd and Id are converter transformer turns 
ratio, commutation reactance, firing angle, extinction angle, 
AC voltage, DC voltage and DC current, respectively. The 
subscripts r, i and N denote rectifier, inverter and nominal 
values, respectively.  
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B.  Power flow equations at AC buses 

By assuming that 90∠= rsrs zZ  and 90∠= isis zZ , the 
power flow equations may be given by 
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C.  Converters control system equations 
The proposed converters control-system block-diagrams 

are depicted schematically in Fig. 2.  The converter control-
system equations (11) and (12) are derived from these dia-
grams. 
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where Iord, γref, β, Iu, γu, K and  T are current order, reference 
extinction angle, advance firing angle, current control signal, 
extinction angle control signal, gain and time constant, re-
spectively.   
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Fig. 1 Basic dynamic model 



D.  DC transmission line equations 
The DC transmission line is represented by an equivalent 

T network with the lumped charging capacitance at the mid-
point of the DC link, thereby dividing the series impedance 
into two parts.  From this model equation (13–15) may be 
derived: 
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Fig. 2 Converters control system block diagrams, a) Rectifier, b) Inverter. 

III.  DYNAMIC SYSTEM MODEL 
In this section a mathematical model of the dynamic sys-

tem in Fig.1 is derived.  The DC transmission line differential 
equations and load flow equations results in the set of differ-
ential-algebraic (DA) equations (16).  

( ) ( ) ( )uyxhyxfuyxfx f µµµ ,,,,,,, +==  
( ) ( )uyxhyxg g µµ ,,,,0 +=  

(16) 

where [ ]Tircdidr VIIx βα= , [ ]Tiirir VVy γδδ= ,       

μ and u are vectors of state variables, vector of algebraic vari-
ables, vectors of AC/DC system parameters and input vector, 
respectively.   f and g are vectors of functions of these DA 
variables.  The set of algebraic equations may be viewed as a 
manifold over which the dynamics of the differential system 
are constrained to occur [17].  Under equilibrium conditions, 
the system of equations (16) is described by:     

    ( )0000 ,,,0 uyxf µ=  
    ( )000 ,,0 µyxg=  

(17) 

where ( )000 ,, µyx  is an equilibrium or fixed point.  An operat-
ing point is an equilibrium point.  Hence at each operating 
point, the system may be described by a linearized form of 
equation (16). The general linear system model is given by :                 

     ( ) ( ) uhyyxfxyxfx fyx ∆+∆+∆=∆ 000000 ,,,, µµ  
       yyxgxyxg yx ∆+∆= ),,(),,(0 000000 µµ  

(18) 

where fx, fy, gx and gy are the jacobian sub-matrices compris-
ing partial derivatives of f and g with respect to x or y, as in-
dicated by the subscript label.  Substituting ∆y from the sec-
ond equation of  (18) into the first one gives equation (19). 

[ ] uhxggffx fxyyx ∆+∆−=∆ −1 ( ) uBxyxA ∆+∆= 000 ,, µ  (19) 

where A is the dynamic state matrix describing local dynamic 
behavior of the nonlinear system, as given by Eq.20, assum-
ing that gy remains nonsingular along system trajectories as 
the system parameters vary.  

( ) xyyx ggffyxA 1
000 ,, −−=µ  (20) 

The per-unit values of the proposed dynamic model are cal-
culated based on the method presented in [16]. Then, the 
nonlinear system equation (17) is solved for different operat-
ing conditions and several operating points are obtained.  

IV.  ROBUST NONLINEAR FUZZY CONTROL DESIGN 
In the proposed controller design, the nonlinear system 

model decomposes into linear system models in accordance 
with the cases for which linear models are suitable, and then 
individual linear models are aggregated into a single nonlin-
ear model in terms of membership functions.  This is a non-
local approach which is conceptually simple and straight for-
ward. The nominal model of a nonlinear system is: 

    )(),(),()( tutxgtxftx +=  
    )()( tCxty =  

(21) 
(22) 

where x(t), u(t), y and C are vector of state variables, vector of 
control inputs, vector of outputs and constant matrix, respec-
tively.  Adding model uncertainties ∆f to system (21) gives:  

            )(),(),,(),()( tutxgtxftxftx +∆+= ξ  (23) 

where ξ is the vector of uncertain parameters which is re-
stricted to a prescribed bounding set [16]. By considering the 
Takagi-Sugeno fuzzy model [18, 19], the uncertain nonlinear 
system (23) can be modeled as the following uncertain fuzzy 
system: 
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(24) 

where θj (j=1,…, p) are the premise variables, which are func-
tions of state variables x, μij (i=1,…, r) are fuzzy sets, r is the 
number of fuzzy rules, and p is the number of the premise 
variables.  ∆Ai represents the uncertainties in system matrix.  
It is assumed that ∆Ai admits the following form: 

        ( ) ( ) riEtxYDtxA iiii ,...,1,,,, ==∆ ξξ  (25) 

where Di and Ei are known real constant matrices of appro-
priate dimensions and uncertainty Yi , an unknown matrix 
valued function of (x,t,ξ) with a known bounded set [16].  
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Fuzzy blending of each individual model yields the overall 
fuzzy model as follows [16]: 
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and ω i (i=1,…, r) are the membership function of the systems 
belonging to plant rule i.  The output equation is also added 
into the overall model for convenience, and it is assumed that 
all the triples (Ai, Bi, C), i=1,…,r, are controllable and ob-
servable.  It should be noted that the parameter uncertainty 
structure used in this paper has been widely used in the study 
of the problem of robust stability and stabilization of uncer-
tain linear systems [20]. The first objective in this section is 
to design a robust proportional controller of the following 
form: 
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where ( )riFi ,...,2,1= are constant matrices; such that the 
closed loop system (26) and (27) is asymptotically stable.  In 
other words, the feedback matrices ( )riFi ,...,2,1=  need to be 
obtained such that system is robustly stabilized. In this re-
gard, the following theorem is given for the stabilization of 
system (26) with B1=…=Br=B by a proportional controller.  
For HVDC systems, all of the matrices Bi are also identical. 

Theorem 1: The system (26) can be robustly stabilized by con-
troller (27) if there exist positive definite matrices P, matrices 
Fi and positive numbers εi (i=1,…,r), such that the matrix 
inequalities in (28) hold. 
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The proof of this theorem and its necessary lemmas are given 
in [16] and hence is omitted here.  The solution of (28) is very 
complicated, and the matrix inequalities (28) can not be di-
rectly used to calculate the required feedback matrices Fi. In 
[16], an iterative linear matrix inequality (ILMI) algorithm 
was developed to solve matrix inequalities (28). 

The final objective in this section is to design a robust PI 
controller of the following form: 

                            ( ) ( ) ( )∫+=
t

Ip dyFtyFtu
0

ττ  (29) 

System (26) is considered again, but now a PI controller (29) 
is used instead of proportional controller (27).  It can be easily 

shown that with a simple variable change xz =1  , ∫=
t

ydtz
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the problem of PI controller design for system (26) is reduced 

to that of proportional controller design for the following sys-
tem [16]: 
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where iii AyCBA ∆,,,,  are appropriate matrices in new system. 
The feedback matrices FP and FI can be calculated by apply-
ing theorem 1 and the ILMI algorithm to system (30). 

V.  SIMULATION 
To investigate system performance with the proposed ro-

bust nonlinear fuzzy controller, several simulations are per-
formed. The design of HVDC controllers is strongly affected 
by the effective short circuit ratio (ESCR) at the converter 
stations.  After optimizing these controllers for rated condi-
tions of operation, the problem of operating them under dif-
ferent ESCR levels is critical, especially in the case of weak 
AC networks.  In a weak AC system, and with an unsuitable 
control design, the AC/DC system may lose its stability under 
such disturbances.   Such conditions can be created in two 
ways: 

- During the operation of the system with a very weak 
AC network (very low ESCR) and/or operating the 
system with very small stability margin, changing one 
of the system reference values suddenly (e.g. step 
change of current order), 

- Reducing the effective short-circuit ratio to a very low 
level by an AC network switching (switched reduction 
of ESCR). 

In this study, for the switched reduction of ESCR, parallel 
AC transmission lines with switching capability are used.  In 
order to obtain the different operating points, the nonlinear 
system equations (17) are solved at five different operating 
conditions. All of the required values, e.g. jacobian sub-
matrices, dynamic state matrices, feedback matrices             
Fi= [FPi  FIi] , i=1, 2,..., 5, are calculated off-line based on the 
previous section’s theories.  There are many options to assign 
membership functions. For the sake of convenience in compu-
tation, triangular functions are selected as membership func-
tions; some of which are depicted in Fig.3.  

 

 

 

 

 

 
 

Fig. 3 Some selected membership functions  
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To account for the parameter perturbation and approxima-
tion error caused by linearization, ∆Ai (i=1,…,5) equal to 
0.15% times the corresponding Ai is chosen. The vector con-
trol u is shown in (31). 
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The block diagram of the proposed controller is shown in 
Fig.4. The FFC block in Fig. 4 is a fuzzy system that adjusts 
the 51,...,αα  constants based on the input state vector, X.   

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4  Block diagram of proposed robust nonlinear fuzzy controller 
 

The proposed and conventional controllers were simulated 
under different operating conditions and the results were 
compared.  The comparison shows that for small disturbance 
and strong AC network, the performance of the proposed con-
troller may not be much better than the conventional one.  
However, with a very weak AC/DC system (SCR<2), the pro-
posed controller performs better and the system response is 
significantly improved after a sudden change in current order 
and/or a switched reduction in ESCR.  In contrast, similar 
HVDC-system operation with a conventional controller brings 
the system into an unstable region.  The behavior of the sys-
tem during a 10% reduction of ESCR with conventional and 
proposed controller is shown in Fig. 5 and Fig. 6, respec-
tively.  

Regardless of first overshoot, the system becomes stable af-
ter about 0.4 second with the proposed controller.  The exis-
tence of some oscillations in the waveforms is normal. This is 
due to operating the system with very weak AC systems.  In 
this situation, the capability of system to retain a sinusoidal 
AC voltage is reduced and the harmonic distortion is in-
creased.  

VI.  CONCLUSIONS  
The design and stability of a new robust nonlinear fuzzy 

controller for HVDC systems has been studied in this paper.  
A new simplified nonlinear dynamic model has been 
developed for HVDC systems that can be used to design the 
controller. The proposed model decomposes into several 

linear systems around its important equilibrium points. The 
introduction of parameter uncertainties in the T-S fuzzy 
model can account for both approximation error of fuzzy 
model and actual parameter uncertainty in the HVDC system. 
Simulation results show that the transient stability can be 
improved by using proposed controller when large faults 
appear in the system.  Also, the stable behavior of a very weak 
AC/DC system (SCR<2) with proposed controller is very 
significant when a sudden change in current order is applied. 
The same situation with conventional control brings the 
system into unstable region. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  System performance with conventional controllers during a  
10% reduction of ESCR. 
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Fig. 6  System performance with proposed controller during a 10% reduction 
of ESCR. 
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