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 Abstract - This paper presents a method for condensing 

modal domain transmission line models based on matrix 
transformation. The proposed model takes advantage of some 
similarities between non-homopolar modes, applying orthogonal 
vectors and complex number theory to manipulate the state 
vectors in modal domain, reducing the vector dimension. This 
method is applied to a single three-phase system (500 kV line). 

The above-mentioned resources and procedures, as well as 
their advantages (reduction of state vectors, and an increase in 
processing speed, which leads to a processing time reduction) 
are the contributions of this paper to line modeling. 

II. CONDENSED TRANSMISSION LINE MODEL 
The resources used led to a reduction both in the number of 

operations per iteration and state allocation, which optimize the 
procedure and increase the processing simulation speed. 

The transmission line modeling proposed is applied to 
ideally transposed transmission lines and lines with a vertical 
symmetry plane [2]. In these special cases the mode-to-phase 
transformation allows line representation through decoupled 
modal circuits that have the following characteristics: a well-
defined homopolar mode and two modes with equal or very 
similar eigenvalues, which result in propagation characteristics 
identical or almost identical. There is an infinity linear 
combination of non homopolar modes or quasi-modes that 
could be used. For lines with a vertical symmetry plane, 
Clarke β-mode is an exact mode and Clarke α and homopolar 
components can be treated as quasi-modes, namely α quasi-
mode and homopolar quasi-mode [2]. For this application 
Clarke transformation  [3] was adopted because it is a real 
transformation matrix, frequency independent and well 
adjusted to time domain programs.  
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I. INTRODUCTION 
In this paper a method for compacting modal domain 

transmission line models is proposed. The proposed model 
takes advantage of some similarities between non homopolar 
modes, applying orthogonal vectors and complex number 
theory to manipulate the state vectors in modal domain 
reducing the vectors dimension.  

The distributed parameter model [1] was the representation 
chosen to implement the Condensed Model, although it does 
not take into account the frequency dependence of 
longitudinal parameters. Aside from this approximation, due 
to its simplicity, it is still one of the most used transmission 
line representation in electromagnetic studies. The proposed 
methodology can be extended to more complete models, 
which properly represent frequency dependence of 
longitudinal parameters in modal domain.  

 As the non-homopolar propagation modes have similar (or 
equal) behavior, the objective is to use a single circuit to 
represent both non-homopolar modes. A research of a more 
condensed way to represent the state signal propagation for 
non-homopolar components (α and β) through a single circuit 
is the main purpose of this present work. The numerical 
solution of the differential equations related to non-homopolar 
propagation modes must process at the same time both signals 
(which can be different) related to these modes, recovering 
each one in the final processing without mixing. The 
following sections will present the basic idea implemented in a 
simple  circuit, and the development required to solve 
modal equations of transmission lines. 

RL

This procedure is applied to a single three-phase 500 kV 
line assumed ideally transposed (that is to say, the length of 
the transposed section is much shorter than that of the 
wavelength of frequencies involved in the study).  
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A simple series RL circuit was considered in the initial 
study. Two voltage sources with distinct frequency and signal 
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give as output two current signals not mixed. 
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The voltage signals were converted into complex quantity 
through a Condenser Device and injected into a single circuit, 
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Figure 1.  Initial test-circuit. 
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The differential equation for the circuit is written in terms 
of the current. 
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Figure 2.  RL-circuit response (inductor current). 

After applying trapezoidal integration in the solution of the 
differential equation for the RL circuit, together with handling 
injected signals through complex numbers, there were no 
signal distortions in the circuit response during the simulation 
process, Fig. 2. The two current signals were properly 
obtained and could be separated at anytime. 

The operations carried out by means of complex quantity 
manipulation were accomplished without affecting the 
solution of the first-order differential equation of the test 
circuit. The same approach will be implemented to a modified 
transmission line model. 

II.2 Expanding the New Concept to Transmission Line 
Equations 

The application of the proposed methodology to 
transmission line’s non homopolar modes will use the same 

approach. It is necessary to condense the two non homopolar 
voltages and currents in one single voltage and current signal 
and inject them in the single non homopolar circuit.  

To perform the Condensation, a real phase-mode 
transformation matrix was applied in order to avoid any 
improper operation of the condensed vectors with respect to 
the transmission line theory. In the present research, Clarke 
transformation  [3] was adopted because it is a real 
transformation matrix and well adjusted to three-phase studies. 
After identifying the phase-mode transformation matrix it was 
necessary to define a matrix M , a non-quadratic matrix, 
composed of some complex elements that will condense the 
non-homopolar modes. Pre-multiplying the matrix T  by the 
above mentioned M matrix leads to a new transformation 
matrix T  whose dimension is not square.  
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The model schematic diagram is presented in Fig. 3. 
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Figure 3.  Condensed Transmission Line Model. 
The final transformation matrix must have the 2 x 3 

dimension for a three-phase system, as it has the objective of 
condensing the modal vectors from 3 x 1 dimension to 2 x 1. 
This condenser device performs α- and β-components 
compaction (related to non-homopolar modes) in a single 
complex element. 

The modal components α and β are manipulated through 
orthogonal unitary vectors  and , resulting in a complex 
signal (this is the condenser device). The orthogonal axis can 
have an arbitrary angle θ related to a positive real axis (there is 
no restriction to θ) as depicted in Fig. 4. 
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Figure 4.  Unitary orthogonal vectors. 

The matrix M composition is based on the chosen 



orthogonal vectors and is structured as follows: 
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The new modified transformation matrix has the following 
structure: 
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Applying the new transformation matrix, the modal vector 

now has a 2 x 1 dimension. The vector has a real element  

representing the homopolar component and a complex element 

 representing the multiplexed non-homopolar 

components, where: 
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where ,  and  are scalar quantities in phase domain. aV bV cV
In order to return to phase components it is necessary to 

apply the transformation T , where N is the pseudo-
inverse matrix [4] of the matrix M (4) and (7). There comes  
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And matrix N can be calculated as in (11) . 
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where M  is matrix M transposed conjugate. 
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Matrix N is presented in (12) and the transformation matrix 
 in (13) . The terms modT 1V  and 2V correspond to the 

complex conjugate of vectors V1 and V2 , respectively. 
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The complex number theory applied to reduce the state 
vectors at line terminals was utilized because it allowed the 
multiplexed processing of different signals through a single 
circuit. By this means orthogonal unitary vectors were applied 
to propagate the states without mixing voltage and current α 
and β components.  

Two distinct modal circuits were used, one for the 
homopolar propagation mode and another for both non-
homopolar propagation modes. In this last circuit, multiplexed 
signals of manipulated components α and β were injected. 
Each component magnitude is recovered at the process end 
without signal mixing, because α and β parcels are related to 
orthogonal planes. Therefore, the performed operations 
(trapezoidal integration and complex number manipulation) 
with reduced state vectors do not numerically compromise the 
signal integrity.  

A non-square transformation matrix, , as well as its 
pseudo-inverse, were used in the operations of similarity 
transformation to compose the modal vector and afterwards 
the return to the phase domain.  

modT

It is important to reinforce that the proposed procedure can 
be applied to different transmission line methodologies that 
properly represent the frequency dependence of unitary 
parameter in modal domain. However, in the case study of the 
following section, the proposed model was applied to the 
distributed parameter model (a simple formulation but widely 
known and used). We notice that it is assumed that the phase-
mode transformation matrix T  of the Condensed Line 
Model is composed of real elements. However, this condition 
is not strictly necessary, and some more general approaches 
can be used, with adequate modification of algorithms. At 
least when Clarke’s quasi-modes are enough accurate, it does 
not appear necessary to use more general approaches. 
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III. CASE STUDY 
In order to present a practical application of the proposed 

model, the structure of the Condensed Transmission Line 
Model was inserted into the distributed-parameter line model.  

III.1 System Description 
The simulated system consisted of a 500 kV single three-

phase transmission line with the following characteristics: 
fundamental frequency 60 Hz, 300 km long. The line is 
assumed transposed with 70 % reactive shunt compensation. 
All data of the system case, placed on Table I, refer to the high 
voltage side. The data related to the transmission line (the 
60 Hz derived parameters) are on Table II. The single-line 
diagram of the test system (with source, short-circuit 



equivalent impedance, transformer, circuit breaker, 
transmission line and shunt reactor compensation) is presented 
in Fig. 5. 

Table I - System Data Simulation  
Source Transformer Shunt reactor

S  sc  (rms )= 500 kV

Req  sc  = 4.189 Ω R tr  =  1.507  Ω
Xd  sc  = 143.911 Ω X tr  = 150.74 Ω X sr  = 935.91 Ω  

Table II - Basic Line Unitary Parameters 
components longitudinal (Ω/km ) transversal (µS/km )

non homopolar 0.0244 + j 0.3219 j 5.088
homopolar 0.3221 + j 1.352 j 2.78  
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Figure 6. Successful line energization - Voltage at receiving end. 
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Figure 5. Energization – Single-line diagram. 

Several cases were simulated to observe the Model 
behavior in a system with transmission lines which have 
distinct terminal conditions of α and β modes. The cases are: 

a) Line energization with all switch-breaker poles closed 
at the same instant .  0=t

b) Line energization with all switch-breaker poles closed 
at the same instant t , supposing a single phase to 
ground fault at the receiving end.  

0=

c) Line energization with all switch-breaker poles closed 
at the same instant t , supposing a two-phase fault 
(not involving ground) at the receiving end. 

0=

Figure 7. Successful line energization - Current at sending end. d) Line energization with all switch-breaker poles closed 
at the same instant t , supposing a two-phase to 
ground fault at the receiving end. 
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The results obtained in the simulation (a) are presented in 
Figs. 6 and 7. The simulation was repeated for different values 
of θ angle (used in the structure of the modified modal 
decomposition matrix), always leading to the same result. 

The results obtained in the simulation (b) are presented in 
Figs. 8 and 9. In this case the homopolar mode appears after 
the non homopolar traveling waves reach the single phase-to-
ground fault at the line end. After one travel time all modes 
are present in the transient. The Condensed Model represented 
properly the phenomenon. 

In Figs. 10 and 11 the results for simulation (c) are 
presented. In this case the two non homopolar modes appear 
after the first reflection at the two phase fault (not involving 
ground) at the line end.  Figure 8. Line energization with single phase to ground fault (Ag) at 

receiving end - Voltage at receiving end. In Figs. 12 and 13 the results for the simulation (d) are 
presented. In this case all modes appear after the first 
reflection at the two phase to ground fault at the line end.  III.2 Model Performance Analysis 

In all cases simulated the model represented properly the 
transient phenomenon, propagating each mode wave correctly 
in its circuit, an actual one for the homopolar mode and a 
multiplexed one for non homopolar modes.  

The distributed parameter model and the Condensed Model 
were implemented in the same platform (Matlab®), in order to 
perform process time comparison. The simulation time for all 
the cases was 250 ms and the time step 50 µs. 

 The relation defined as Condensed Model processing time 



over Original EMTP Distributed Transmission Line Model 
execution time was 0.76, resulting in a gain of approximately 
24.2 % in the TL processing time. A total time simulation 
reduction was obtained, as expected, based on the reduction of 
approximately ¼ of the total number of operations related to 
the transmission line. The total time reduction was 7.7 % 
considering the specific case simulated. The time reduction 
shall be more significant in actual system studies where more 
than just one transmission line is present, as is the case of the 
case study. 
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Figure 9. Line energization with single phase to ground fault (Ag) at 
receiving end - Current at sending end. 
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Figure 10. Line energization with two-phase fault (AB) at receiving 
end - Voltage at receiving end. 

The simulator built for this study is quite simple, as the 
objective was not the development of simulation software, but 
the implementation of the proposed methodology. The 
example is also simple enough to demonstrate the 
computational processing time saving. The proposed 
procedure can be applied to transmission lines with proper 
representation of frequency dependence longitudinal unitary 
parameters. The lines can have distinct switching conditions 
represented in phase domain, which will result in distinct 
switching conditions of α and β modes. As shown on the 
simulated cases, the model can be properly applied to 
transmission lines, which have distinct terminal conditions of 

α and β modes. 
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Figure 11. Line energization with two-phase fault (AB) at receiving 
end - Current at sending end. 
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Figure 12. Line energization with two-phase to ground fault (ABg) at 
receiving end - Voltage at receiving end. 
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Figure 13. Line energization with two-phase to ground fault (ABg) at 
receiving end - Current at sending end. 



IV. CONCLUSIONS 
The paper describes a method for compacting modal 

domain transmission line models in EMTP-type programs. 
The proposed model takes advantage of some similarities 
between non homopolar modes, applying orthogonal vectors 
and complex number theory to manipulate the state vectors in 
modal domain, reducing the vectors dimension.  

The proposed methodology can be applied to any model 
that works in the modal domain (whether using Clarke's 
transformation or even to any relationship of similarity that 
leads to the separation of the propagation modes). We notice 
that it is assumed that the phase-mode transformation matrix 

 of the Condensed Line Model is composed of real 
elements. However, this condition is not strictly necessary, 
and some more general approaches can be used, with adequate 
modification of algorithms. At least when Clarke’s quasi-
modes are enough accurate, it does not appear necessary to use 
more general approaches. 

ClkT

The use of non-square modal decomposition matrix leads to 
the application of its pseudo-inverse in the operations of 
similarity transformation, to compose the modal vector and 
afterwards, the return to the phase domain.  

In the paper the model was applied to the worldly known 
distributed parameter model. As stated, the Condensed Model 
is applicable to any modal domain transmission line model, 
which considers properly the longitudinal parameter frequency 
dependence.   

The use of the proposed procedure is pertinent in cases 
when the non-homopolar modes are equal (ideally transposed 
lines) or so similar (non-transposed lines with vertical 
symmetry plane) that they can be considered identical in 
specific studies, in which the error of this approximation is 
acceptable. 

The Condensed Model can be applied to transmission lines 
with distinct terminal conditions of α and β modes, as 
presented, and distinct switching conditions of α and β modes. 

The Condensed Transmission Line Model can be 
implemented in the code of EMTP-programs. This alternative 
resource provides a reduction in the number of operations 
related to transmission lines carried out by iteration. This 
reduction in processing time is relevant and the methodology 
can be applied to real time simulation tools.  
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