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 Abstract--Digital simulation platforms, such as 

electromagnetic transient simulation programs, are instrumental 
in the analysis and design of modern power networks. Use of 
very accurate models for various network elements as well as 
efficient solution methods provides their users with a powerful 
means for studying the short-term transient behavior of a 
network with a great deal of accuracy; however, it also increases 
the computational intensity of these programs. Such intensities 
are severely amplified in design problems, where selection and 
tuning of the design parameters requires several successive 
simulations. The computational burden of simulation-based 
designs can be drastically reduced by interfacing nonlinear 
optimization algorithms with transient simulation programs. 
This paper extends the optimization-based approach by 
introducing a method for interfacing gradient-based optimization 
algorithms, i.e., the ones that need first order derivatives as well 
as objective function evaluations. The paper describes the 
method of interfacing, including the calculation of partial 
derivatives and determination of the step length parameter. The 
paper also discusses the inherent parallel nature of the proposed 
tool and proposes a method for exploiting this feature. Usefulness 
of the method is manifested through the example of an HVDC 
control system design using PSCAD/EMTDC simulation 
program. 
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I.  INTRODUCTION 
LECTRIC power networks exhibit complicated dynamic 
behavior due to the presence of nonlinear and frequency-

dependent elements. The increasing application of high power 
switching systems has further exacerbated the severity of 
nonlinear phenomena in power systems. This increasing 
complexity limits the application of many of the conventional 
analytical design procedures, and necessitates the use of 
specialized tools and techniques to capture the relevant 
transients and interactions. 

Transient simulation tools, which use detailed modeling 
and solution techniques and therefore provide an accurate 
representation of the short-term transient behavior of power 
systems, are finding numerous applications in the design of 
power networks with various switching and nonlinear 
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elements. Conventional design procedures used in these tools 
are essentially based on generating (on a random or sequential 
basis) a large collection of candidate design parameter sets 
and simulating the network for each of the sets [1]. Eventually 
the parameter set that yields the most suitable performance 
(according to the specified design objectives) is selected. 

Since transient simulation is a slow and computationally 
demanding procedure, the conventional design procedure 
mentioned above is not entirely suitable for today's design 
problems, which involve multiple variables and multiple 
objectives. In such cases the computational burden of the 
conventional approach becomes prohibitively large.  

Recently heuristic non-linear optimization techniques have 
been successfully used to steer the multiple-runs, and the 
method appears to result in orders of magnitude reduction in 
computer resources [2,3]. The most prominent feature of this 
tool is its capability of finding the optimal setting of design 
parameters (at least locally) even for the cases where no 
explicit representation of the design objective function in 
terms of design parameters is available.  

This paper extends the optimization-based approach by 
including gradient-based methods [4]. At first glance these 
methods appear to be potentially inferior to heuristic methods 
due to the requirement of calculating derivatives numerically. 
However they still often result in quick convergence and give 
uniformly good performance regardless of the number of 
variables to be optimized. This latter feature becomes very 
essential when dealing with design in which a large number of 
parameters are to be optimized simultaneously. 

In the sections to follow, the paper covers, in detail, the 
method devised for interfacing an emtp-type simulation 
program with the Cauchy gradient-based optimization 
algorithm, and addresses the methods used for numerical 
calculation of the gradients as well as an intermediate stage 
for determination of the step length parameter used in the 
Cauchy optimization method. The paper also discusses a 
number of practical issues such as the efficiency and 
suitability of the proposed tool in comparison with other 
optimal design methods. It also investigates the parallelism of 
the algorithm and proposes methods for the implementation of 
the tool on parallel processing platforms. 

The approach is illustrated using an example, in which the 
control parameters are optimally selected for an HVDC 
transmission system based on the detailed CIGRE HVDC 
Benchmark model represented in the PSCAD/EMTDC 
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simulation program. 

II.  OPTIMIZATION-ENABLED TRANSIENT SIMULATION 
The underlying concept of optimization-enabled transient 

simulation is to use a dedicated optimization algorithm in 
conjunction with a simulation program so that search for the 
optimal parameter set is enhanced. Fig. 1 shows the schematic 
diagram of the interface between a generic (non-gradient-
based) optimization algorithm and a simulation program. The 
objective function (OF) evaluated through simulation is 
designed by the user and encapsulates the design objectives. 
Evaluation of the OF (in this case through simulation) yields a 
figure of merit for the performance of the system under the 
current parameter set and is a measure of the conformity of the 
actual performance of the system with the design objectives.  
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Fig. 1.  Schematic diagram of the optimization-enabled transient simulation. 

 
The authors have already implemented this concept using a 

number of non-gradient-based optimization algorithms (such 
as the nonlinear Simplex optimization method and genetic 
algorithms) along with the PSCAD/EMTDC simulation 
program and have used the combined tool for the optimal 
design of some nonlinear systems [2,5]. It has been shown that 
the new tool is orders of magnitude faster than the 
conventional multiple-run approach in converging to the 
optimum (at least a local one) while it also produces results of 
much accuracy. 

The complexity of nonlinear and switching systems (such 
as power electronic devices) often prohibits a closed form 
representation of the OF in terms of the design variables, and 
for that reason the non-gradient-based optimization algorithm, 
which depend only on the OF evaluations, are primarily 
chosen to be interfaced. Non-gradient-based algorithms lend 
themselves to a relatively straightforward implementation and 
have a fairly good performance in terms of their rate of 
convergence to the optimum. 

Gradient-based algorithms, on the other hand, are more 
complicated as they require partial derivatives of the OF as 

well as OF evaluations. Lack of an analytical representation of 
the OF in terms of individual design parameters prohibits the 
analytical evaluation of the OF derivatives and therefore, 
numerical methods are to be used for their calculation. 
Although this seems to be a major drawback (as it is prone to 
numerical inaccuracies), they have prominent features that 
provide incentive for their re-consideration: (i) they are 
inherently robust with regard to the number of parameters to 
be optimized, and (ii) regardless of how far the staring point 
might be from a local optimum, they still establish a trajectory 
of parameter sets with steadily decreasing OF evaluations (in a 
minimization problem). In other words, gradient-based 
algorithms, if properly implemented, can optimize an OF with 
virtually any number of variables starting from an arbitrarily 
selected initial point. 

In the following, the fundamental aspects of a gradient-
based algorithm are reviewed; numerical methods developed 
for the calculation of the derivatives and other intermediate 
steps are also described. 

III.  GRADIENT-BASED OPTIMIZATION ALGORITHMS 
Consider a generic minimization problem stated as follows. 
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where the parameter set x contains the design parameters to be 
(optimally) determined by the optimization algorithm and f(x) 
is the OF. 

In gradient-based optimization algorithms, the selection of 
a new parameter set is carried out based on the OF evaluation 
at the current point as well as first (and sometimes higher) 
order derivatives. The general iteration formula in a generic 
gradient-based algorithm is as follows. 

( 1) ( ) ( ) ( )( )k k k kα+ = +x x s x                                                  (2) 
where x(k) and x(k+1) are current and new parameter sets, 
respectively. s(x(k)) is the search direction in the N-
dimensional space, and α(k) is the length of the step in that 
direction. The search direction s(x(k)) is determined using 
gradient information at the current point x(k). The most 
straightforward approach to choose the search direction is to 
use the direction of the largest descent based on the local 
information at x(k). It can be shown that such a direction is the 
opposite of the gradient of the objective function at x(k). The 
iteration formula will therefore be as follows. 

( 1) ( ) ( ) ( )( )k k k kfα+ = − ∇x x x                                               (3) 
where ∇f(x(k))  is the gradient of the objective function at x(k), 
and it is obtained from the following formula. 
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The formula of (3) is known as the Cauchy optimization 
method. The algorithm can be stopped when the gradient 
(derivative) becomes smaller than a pre-specified threshold 
(ε). 



Having found the gradient of the OF at the current point, 
one can observe that ( 1) ( )( ) ( )k kf g α+ =x , and as such the step 
length parameter can determine how much the OF is 
decreased as a result of the current iteration. The step length 
parameter α(k) is usually chosen to minimize the objective 
function at the new point. Should an explicit representation of 
the objective function in terms of design parameters be 
available, the parameters s(x(k)) and α(k)  can be obtained using 
partial derivatives and a single variable optimization, 
respectively (see below for details). However, lack of such an 
explicit mathematical representation leaves the designer with 
the only feasible approach being the use of numerical 
techniques to determine search direction and step length. 

A.  Numerical Calculation of Partial Derivatives 
 The gradient vector given in (4) is formed by calculating 

individual partial derivatives. They can be calculated using the 
following formula. 
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where h is an adequately small increment; the vector hj is 
defined as follows. 
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Note that (5) practically yields the average of the right- and 
left-hand derivatives of the OF at the current point. 
Technically the increment h has to be vanishingly small; 
however, to avoid numerical inaccuracies, h is practically 
chosen to be a small fraction (e.g. 5%) of the 
corresponding ( )k

jx . Although this is not necessarily extremely 
small, it still results is a fair approximation of the derivatives. 

Note that the calculation of each partial derivative using (5) 
requires two OF evaluations (in this case through simulation). 
In an N-variable optimization problem, 2N simulations are 
required merely to obtain the gradient vector. Compared to a 
non-gradient-based approach, this can be an unfavorable 
property as the number of intermediate simulations quickly 
grows with the number of parameters; however, the inherently 
faster convergence of the gradient-based algorithms is 
expected to partially compensate for the (potentially large) 
number of intermediate steps. 

B.  Determination of the Step Length Parameter 
Theoretically, the step length parameter α(k) can be 

determined to result in the largest decrease in the OF during 
the evolution from x(k) to x(k+1). To do so, one needs to have a 
closed form representation of ( 1) ( )( ) ( )k kf g α+ =x  and to use a 
single-variable optimization method to find α(k) to 
minimize ( )( )kg α . In nonlinear circuits, such as the ones 
encountered in power systems, an analytical expression for 

( )( )kg α  is often prohibitively difficult to obtain, limiting the 
application of analytical optimization methods to find the 

optimal value of the α(k).  
On the other hand there are optimization methods that do 

not require an OF in closed form and can be technically 
applied to find the optimal value of the α(k); however, an 
underlying assumption in these algorithms is the unimodality 
of the OF [4], which cannot be guaranteed in our case. 
Therefore, instead of trying to optimize the step length 
parameter at the current point (to obtain the 
smallest ( 1)( )kf +x ), a sub-optimal value for the α(k) is used. 
The algorithm used to obtain this sub-optimal value is given 
below. 
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Algorithm 1.  Determination of the step length parameter 

 
The underlying idea in this algorithm is to find a value for 

the step length so that ( 1) ( )( ) ( )k kf f+ <x x . Note that this value 
does not necessarily result in the largest decrease, hence a 
sub-optimal value. 

C.  Interfacing the Parts 
Having devised methods for the numerical calculation of 

partial derivatives as well as the step length parameter, one 
can interface them with a transient simulation program to form 
the combined (gradient-based) optimization-enabled transient 
simulation. Fig. 2 shows a schematic diagram of the combined 
tool. 

IV.  CASE STUDY 
This section demonstrates the use of the proposed 

combined tool in the control system design for an HVDC 
system. The study is based on the CIGRE HVDC Benchmark 
[6] model developed in the PSCAD/EMTDC transient 
simulation program. Fig. 3 shows a schematic diagram of the 
system along with its control system; the parameters to be 



optimized are the proportional gain (Kr1) and integral time 
constant (Tr1) on the rectifier side (current controller) and 
proportional gain (Ki2) and integral time constant (Ti2) for the 
inverter side (extinction angle controller). 

Other parameters of the system are listed in Table I. 
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Fig. 2.  Interface between the optimization algorithm and transient simulation 

 
TABLE I 

DATA PERTINENT TO THE CIGRE HVDC BENCHMARK MODEL 
Rectifier side 

AC system Transformers (each) 
373.3 kV, SCR = 2.5@84° 600 MVA, 211.3/345 kV, 18% 

Inverter side 
AC system Transformers (each) 

222.3 kV, SCR = 3.0@81° 600 MVA, 206.5/230 kV, 18% 
Filters and fixed capacitors (MVAR) (for both sides) 

11-th harmonic 13-th harmonic Fixed capacitors 
250 250 150 

DC link 
DC line resistance Rated dc voltage 

(rectifier side) 
Rated dc current 

5 Ω 500 kV 2 kA 
 
The objective of the design is to select the values of the 

control system parameters so that the small signal dynamics of 
the dc line current is optimized around its nominal operating 
point, i.e. the deviation between the Idref and actual Id is 
minimized. The test on the system comprises a -20% step 
change in the current order (from 1.0 pu to 0.8 pu), followed 
by another +20% change to return the system to its nominal 
operating point.  

The optimization OF used for the design is given as 
follows. 
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Fig. 3.  Schematic diagram of the HVDC system  

 
Note that the OF given in (7) penalizes any deviation 

between the reference and actual values of the dc line current; 
should the two signals be matching at all times, the ISE attains 
its minimum possible value of zero. The objective of the 
design, therefore, is to find the control system parameters so 
that the ISE is minimized, indicating a close match between 
the reference and actual values of the dc current. 

Table II summarizes the optimization results obtained using 
the combined tool. The table shows the pre-optimized 
parameter set as well as the optimized set along with their 
respective OF evaluations, which indicate a significant 
decrease in the ISE evaluation. The corresponding dynamic 
responses of the dc current are shown in Fig. 4. 

 
TABLE II 

OPTIMIZATION RESULTS 
Initial parameter set 

Kr1 Tr1 Ki2 Ti2 ISE 
8.1 0.01 2.5 0.04 124.86 

Optimized parameter set 
Kr1 Tr1 Ki2 Ti2 ISE 
1.33 0.0029 0.67 0.027 0.88 

 
As seen the pre-optimized parameter set has resulted in 

severe sustained current fluctuations, whereas the optimized 



parameter set causes a smooth tracking of the reference 
current with very desirable steady state performance as well. 
The entire design is carried out in 430 simulations, which 
compared to a conventional multiple-run, shows orders of 
magnitude savings in terms of the simulation intensity (note 
that with only 10 steps for each of the 4 variables in this 
example, the conventional multiple-run requires 104 = 10,000 
simulations). 
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Fig. 4.  Dynamic response of the system (top: pre-optimized parameter set; 
bottom: optimized parameter set) 

V.  PARALLELISM OF THE ALGORITHM 
The study presented in this paper shows that gradient-based 

optimization algorithms can be efficiently used in conjunction 
with a transient simulation program for the optimal design of 
complex systems. However, further examination of the 
routines used for numerical calculation of derivatives and also 
determination of an appropriate step length reveals that a large 
number of intermediate simulations are to be carried out to 
find the gradient as well the step length merely to enable 
finding a new parameter set (see (3)). Although gradient-
based algorithms are generally expected to be able to find the 
optimum in a fewer number of iterations than non-gradient-
based algorithms, these intermediate simulations, which are 
necessitated by the absence of an explicit objective function, 
can severely impact the performance of these algorithms. For 
example a gradient-based algorithm may be able to find the 
optimum of a function in handful of iterations as in (3), but 
note that in a 5-variable optimization problem for instance, 
each of the iterations will require 10 simulations to find the 
gradient as well as a number of simulations to determine the 
step length required. The combined number of these 
simulations may become so large that they degrade the 
performance of gradient-based algorithms to below that of 
non-gradient-based ones. However, it is easy to note that the 
numerical evaluation of derivatives as presented in (5) is an 
inherently parallel procedure, because it involves independent 
function evaluations that can be carried out on different 
processors. Therefore, in an N-dimensional problem, for 
which 2N objective function evaluations are required to 

calculate the gradient, each of these evaluations can be 
assigned to a different processor and the final results are sent 
back to the main processor, which does the job of calculating 
the partial derivatives and forming the gradient. Exploiting 
this inherent parallelism can significantly speed up the process 
of optimization and therefore enhances the design loop by 
lowering the burden on the main processor. 

VI.  CONCLUSIONS 
The paper extended the concept of the optimization-

enabled transient simulation to include part of the powerful 
family of gradient-based optimization algorithms. It was 
shown that despite unavailability of an explicit OF in terms of 
design parameters, it is possible o deploy numerical 
techniques for the calculation of the derivatives as well as 
determination of the step length parameter. The paper 
proposed and implemented a method for interfacing these 
algorithms with a transient simulation program and used it for 
the optimal control system design for an HVDC system. 
Despite the intermediate simulations required for the 
implementation of the algorithm, the example case showed 
that the optimization-based approach is still orders of 
magnitude faster than a conventional multiple-run and yields 
results of much higher accuracy as well. The paper also 
investigated the parallel nature of the algorithm that can be 
used on parallel processors to expedite the design process. 
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