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 Abstract--In this paper we present an approach for the 
reduced order modeling of nonlinear power systems. We 
describe a combined symbolic-numeric methodology for a local 
model order reduction which is based on the theory of singularly 
perturbed systems. Since the properties of power systems are 
taken into account, we were able to define an easy to use 
formula which eliminates the necessity of engineering insight 
into the mechanism of large scale systems. This leads to the 
possibility of implementation in automated systems like 
simulation and analysis programs. Thus, this approach can 
make a significant contribution to the efficiency of the 
computation of electrical power systems. 
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I.  INTRODUCTION 

HE size of power grids and the increasingly stressed 
conditions under which power systems operate demand 

the use of computers for analysis and simulation whereas the 
calculation effort increases by leaps and bounds. So the 
economization or reduction of the models of large scale power 
systems plays a decisive role for the simplification of high 
dimensional grids with nonlinear loads. Since power systems 
possess a multiple time scale behavior [1], reduced order 
modeling by means of singular perturbation can be a useful 
tool to achieve this aim. Since the fast phenomena are mostly 
negligible while the slowest transients represent the imported 
properties, model order reduction techniques are applicable to 
electrical power systems. These methods lead to simpler 
subsystems which can be analyzed easier and allow faster 
simulations of power grids. Moreover, it is easier to interpret 
the behavior and properties of subsystems which possess a 
lower dimension as the original one. 

While in general various model order reduction methods 
are a possibility [2], especially reduced order modeling by 
means of the theory of singularly perturbed systems is 
appropriate to simplify power systems [3]. In addition, the 
identification of subsystems by singular perturbations and 
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time scales is relevant in many fields of application [4], 
whereas the properties of the systems wildly differ from one 
application area to another. Generally it is difficult to apply 
model reduction techniques to nonlinear dynamical systems, 
since this leads typically to heavy calculations [5]. Moreover, 
reduced order modeling by singular perturbation possesses 
another main drawback: in opposite to other techniques it 
needs detailed knowledge about the application. Since 
multiple time scales are directly coupled with stiff systems of 
first order ordinary differential equations (ODE) [6], it is 
obvious that the diagonalization of the linear part of 
nonlinear systems can be used to identify the fast and slow 
state variables for a local state space reduction. Since the 
linear part is given by a linearization at a fixed point, the 
reduced model is only valid in a restricted region of the state 
space. However, in practice this approach is rendered 
impractical: the change to modal coordinates leads to near 
singular and badly scaled transformation matrices.  

Maas and Pope [7] suggested another method for the 
identification of slow and fast state variables which is based 
on a real Schur decomposition of the right hand side of the 
ODE. This methodology is reported to be quite powerful for 
the reduced order modeling of combustion problems in the 
context of partial differential equations, where the stiffness is 
based on big differences between the real parts of the 
eigenvalues. Unfortunately, electrical power systems are 
weakly damped: power systems are stiff because of the large 
imaginary parts of conjugate complex eigenvalues, whereas 
real eigenvalues are small. So the models of power systems 
have the character of a highly oscillatory system, which 
cannot be split by the technique introduced by Maas and 
Pope.  

We close this gap and present a modified methodology 
which takes the properties of electrical power systems into 
account. By using the particular conditions of power systems 
we were able to find an easy to use formula for the model 
reduction of nonlinear power systems. Since our technique 
required no deeper insight into the behavior of particular 
problems, we have implemented our methodology as an 
automatic algorithm. So our technique can be used in 
simulation and analysis software. Furthermore, we discuss the 
practicability of error estimation [8], the choice of the 
splitting parameter [9] and the improvement of the results by 
asymptotic expansions [10]. In the end we demonstrate the 
capability of our methodology by means of a 9-dimensional 
model of a 110 kV power grid with a nonlinear load. 
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II.  QUASI-STEADY-STATE ASSUMPTION 

The model of power systems can be written in the form  

 t�x = h(x, p, ) ,                            (1) 

where x is an n-dimensional state space vector corresponding 
to the electrical or mechanical quantities of our system and h 
is a nonlinear vector field. The vector p represents the 
parameters of the power grid while h also contains the 
nonlinear components. When (1) is called stiff, it has fast 
components which reach their steady state very quickly so 
that systems dynamics can be described in terms of the 
remaining slow components. Thus we should be able to split 
x to (y,z)=(Px,Qx), where P and Q are projections on the 
dynamically slow and fast parts. Applying the projections we 
find 
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P x = P h(x p )

Q x = Q h(x p )
.           (2) 

Under the so-called quasi-steady-state assumption (QSSA) 

   0�Qx =                                      (3) 

we get the slow model 
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�P x = P h(x p )

= Q h(x p )
           (4) 

of (1) which represents a differential algebraic equation 
(DAE). The mathematical justification of the QSSA is given 
by the theory of singularly perturbed systems [3]. Applying 
this popular notation and using the approach of the geometric 
singular perturbation theory [11], first we have to detect a 
small parameter ε (ε� 1, ε=pk) in h which transforms our 
given system into the so-called standard form of a singularly 
perturbed system 
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where m∈�y , l∈�z and m+l=n. So we have to determine P 
and Q in dependency on ε. Under some additional conditions, 
(5) represents a dynamic system on a constrained manifold 
[12]. Under the assumption that the Jacobian Dzg (y,z,0) is 
invertible on a solution g(y,z,0)=0, the vector z represents the 
fast variables near the solution for small ε. For ε=0 we reduce 
the state space of (5) from n to m. We get 
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which is called the degenerate system to (2). Now we can 
rewrite (6) in the form 

 ( , ( ),0)= ϕ�y f y z ,           (7) 

where 

         z = ϕ(y) ⇔  g(y,z) = 0.          (8) 

The second equation of (6) defines a slow manifold [12] 

 Γ0:={ }( ) : ( , ,0) = 0y,z g y z .                     (9) 

It is a necessary condition for (6) to have a solution at all that 
the initial value of (1) lies within (9) [8], i.e. at least a 
projection of the initial value is necessary to make (6) 
consistent. As shown in [13] not every system of the form (6) 
has a unique solution, even if the initial value lies on (9). In 
this case (6) has a higher index. In the following we assume 
that (6) is an index 1 problem.  

If we understand the manifold Γ0 as a first approximation 
of an invariant manifold Γε  for ε=0, we can rewrite (9) in the 
form  

                 Γε : ( ) ( )0 1( , )= ϕ ε = ξ + εξ +…y z z z         (10) 

By means of this asymptotic expansion [14] we are able to 
improve the precision of (7) [10].  

III.  SPLITTING ALGORITHM 

The identification of a sufficient parameter ε and the 
determination of an adequate transformation to get (5) from 
(1) is a difficult task. While in the case of a linear system the 
calculation of an adequate transformation is well-known [12], 
the transfer to the standard form of a nonlinear dynamical 
system depends on user’s skill. In order to get a suitable 
transformation for a nonlinear vector field one has to have a 
detailed knowledge about the application area and a sure 
mathematical instinct. In [15] we have compared different 
methods for the calculation of the standard form. All these 
techniques have the same drawback: they cannot be realized 
in a uniform way. That is why we present in the following a 
standardized procedure which is based on the properties of 
power systems. Starting from the well-known idea of time-
scale separation by means of diagonalization, i.e. the 
calculation of the Jordan canonical form of the linear part of 
h, we try to find the fast and slow state variables. 
Unfortunately, in the case of a singularly perturbed system the 
calculation of a Jordan form leads to a nearly singular and 
badly scaled transformation matrix [16]. In order to produce 
relief the well-known QZ-Algorithm, which is well-
established in the field of singular systems [17]-[18], seems 
appropriate, at which the approach of a generalized 
eigenvalue problem is used. If a network model has the form 
of a DAE the QZ-Algorithm is suitable. Since we are starting 
from a model in form of an ODE we have taken the basic 
splitting scheme from Mass and Pope [7]. However, 
compared to [7] we have taken into account that power 
systems are weakly damped and expanded the identification 
of time-scales to highly oscillatory systems. For the 
realization of the splitting algorithm it is suitable to start from 
a complex Schur decomposition. To any real nxn-matrix M 
exists an orthogonal nxn matrix Q, where every 1x1-matrix 
Cii represents a real eigenvalue or a part of a conjugate 
complex eigenvalue: 
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Here, the matrix M represents the linearization of field h. To 
get an ordering of the eigenvalues of Cii according to their 
magnitude a Givens-rotation can be used [19]. Here we 
assume that |λ(C11)|≥ |λ(Cnn)|. So we are able to split the 
spectrum of M by means of the splitting parameter ν>0 into 
two disjoint sets: 
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C

C
                     (12) 

With σfast=σ(S11) and σslow=σ(S22) we can rewrite (11) in the 
form 
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where S11 and S22 are upper triangular matrices. In order to 
transform C into block-diagonal form we use the block 
diagonalization as shown in [19]. We determine a matrix Z in 
the nxn matrix Y  
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has the needed block-structure. The matrix Z is given by a 
generalized Lyapunov equation - the so called Sylvester 
equation 

 11 22 12− + = 0S Z ZS S .         (16) 

So we arrive at 
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IV.  LOCAL STATE SPACE REDUCTION 

By means of the shown splitting algorithm we can 
eliminate the main drawback of the reduced order modeling 
via singular perturbations: the difficult calculation of the 
standard form in the case of a nonlinear dynamical system. 
Now we want to present the procedure for a local state space 
reduction. The initial point of our approach is the following 
singularly perturbed system: 
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It can be shown that (18) has for ε=0, Re{λ(B)}<0 and under 
additionally assumptions the integral manifold z≡0 [9]. 
Furthermore, if ε is sufficiently small, (18) possesses an 
integral manifold Γε near z≡0. So (18) represents the standard 
form of a singularly perturbed system which can be reduced 
to a simpler subsystem. In order to transform (1) into (18), 
first a model of a power system has to expand with its 
linearization given by 

 ( )L 0 0 0= + −z h J z z� ,         (19) 

where z0 is user-defined, h0=h(z0,t0) and J0 is the Jacobian  
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evaluated at z0. So we find 

   ( ) ( )0 0 0 0 0( )L L ,t , tt ,= + − = + − + �

�z z z h J z z h zh x z, ,  (21) 

with 

 ( )0 0 0 0 0, , , ( , ) ( )t t t= − − −h z z h z h J z z� .        (22) 

Now we apply the complex Schur decomposition with the 
block-diagonalization 

               1
0 11 22( , )diag− = =T J T C S S�                  (23) 

to (21): 
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With the coordinate transformation z=z0+Tu and by choosing 
a suitable splitting parameter ν we arrive at  
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If we set ν = ε-1, (25) has the form 

 
( )

( )
1 0,1 11 1 1 0 0

2 0,2 22 2 2 0 0

, , ,

, , ,

t t

t tνε ε ε

= + +

= + +

u h S u h u z

u h S u h u z

�

�

,        (26) 

where 22 22νε =S S . If we set 
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(26) has the same structure as (18). For a detailed justification 
refer [9]. 



V.  GLOBAL MODEL ORDER REDUCTION 

In order to apply the shown local state space reduction to a 
global analysis, we have to integrate the described procedure 
into a numerical ODE solver. As shown in [8] a numerical 
integration of an initial value problem (IVP) within a one-
step descretization consists of a sequence of integration steps 
(Fig. 1). In every step a single integration is performed, where 
the solution of the last one is the initial value of the next one. 
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Fig. 1.  Typical numerical integration scheme of an initial value problem within 
one-step discretization 

 
In order to apply the local state space reduction to a global 

analysis, the classical integration scheme has to be replaced 
by the sequence shown in Fig. 2. Before a numerical 
integration is performed, a local state space reduction (LSSR) 
is necessary in order to reduce the order of the model as well 
as the step-size of the numerical integration. Especially the 
reduction of the step-size leads to decreasing calculation 
effort. Furthermore, the complexity of the solver can be 
reduced which leads to lower computing time. In the first 
view, this procedure seems to be lengthy. However, only by 
means of this structure it is guaranteed that the influence of 
the nonlinearity on the behavior of the state variables is taken 
into account. Against this background it is obvious why the 
efficiency of the splitting algorithm is important. 
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Fig. 2.  Numerical integration scheme with local state space reduction (LSSR) 

 
A critical role in our approach plays the choice of the 

splitting parameter ν. In [8] is suggested to choose the order 
of the slow subsystem by means of an error estimation. This 
approach, which is based on [20], is motivated by the fact that 
sometimes – especially in the case of stiff systems with high 
differences in the magnitude of the real parts of the 
eigenvalues – the QSSA leads to dramatic errors [21]. For 
highly oscillatory systems error estimation is not suitable for 
the calculation of the order of the slow system. In this case 
model order reduction has a character like “averaging” of the 
transients. When we neglect the highly oscillatory parts of 
transients, which causes on a perturbation of the power grid 
at t=t’, an “averaged” solution possesses a high error in the 
neighborhood of t’. Thus error estimation can provide an 
indication for the amplitude of highly oscillations, but it is 
not suitable for calculation of ν. 

For reduced order modeling of power systems it must be 
our goal to eliminate as many as possible of such eigenvalues 

which have imaginary parts. How many we can eliminate is 
given by the dimension of the subsystem which leads to valid 
LSSR. To verify that (26) possesses an invariant manifold for 
ε=εν for single eigenvalues the conditions 

 11 1<
ν

S
,  0,2

d<
ν

h
         (28) 

must be fulfilled, where d defines a small ball around z0 in the 
original state space and |.| denotes a matrix norm induced by 
the Euclidean vector norm. So we are able to estimate the 
minimum order of the slow system. The parameter d is given 
by the step size while the step size can approximately be 
calculated via the magnitude of the eigenvalues of the reduced 
system. The mathematical justification of (28) is given in [9]. 

If the reduction leads to high errors, on the one hand it is 
possible to choose a higher order of the reduced system. 
However, from this follows the necessity of a lower step-size. 
On the other hand it is also possible to improve the 
approximation by an asymptotic expansion as shown above. 
For (18) the calculation of an asymptotic expansion – a so 
called higher order QSSA – leads to 

 1 2
0 0( , , ,0) ( )t O−= ϕ − ε ϕ + εz B g y .        (29) 

A detailed description of the power of asymptotic expansions 
and the proof of (29) is given in [10]. 

VI.  CASE STUDY 

In order to demonstrate our approach by an example, we 
have decided to take a simplified model of an 110 kV power 
grid with a nonlinear resistive load (Fig. 3), whereas the 
characteristic of the nonlinearity is shown in Fig. 4. 
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Fig. 3.  Simplified model of a 110 kV power grid with nonlinear load 

                    
Fig. 4.  The nonlinear load R(iR) is approximated by 3

R Ru i= γ with γ ≈ 77 and 
the auxiliary value R0=110Ω 



We dimension as follows: for ω0=100π/s we choose 
R0=0.007Ω, L0=0.07/(100π)H, R1=0.8Ω, L1=4/(100π)H, 
R1=2R1, L1=2L2  and C=150nF. R1, L1 and R2, L2 represent 
lines of 10 and 20 km length, respectively. The sinusoidal 
voltage source is given by u0=110kV/√3 cos(ω0t+ϕ), where 
ϕ=π/4. By Kirchhoff’s Law we find a set of nine first order 
ODEs, whereas |λmax|/|λmin|≈2700 for t=[0,20ms]. Because of 
the high stiffness, one-step solvers are impractical. Typically, 
solvers for stiff ODEs like numerical differentiation formulas 
(NDF) are used which have a big computational effort [22]. 
In order to decrease the computation time, reduced order 
modeling seems to be suitable. However, the nonlinearity 
excludes mostly a global model order reduction. So we use 
our approach of a local state space reduction to calculate the 
time depending currents and voltages. In Fig. 5 and Fig. 6 we 
show the solution for the current z1 and the voltage z8 of the 
complete system as well as the solution of reduced systems 
with and without a first order asymptotic expansion. As 
shown in Fig. 5 and 6 the use of our approach without 
asymptotic expansion leads to disastrous results. To avoid big 
discrepancies between the reduced and full model a higher 
order of the reduced model as well as an asymptotic 
expansion is possible, whereas the latter has a lower 
computational effort. It turns out that reduced order modeling 
with asymptotic expansions leads to a higher accuracy of the 
results, whereas the computational effort is moderate. 

As shown in Fig. 5 and 6, the state variables possess near 
the start-up big highly oscillatory parts, which leads to the 
need of multi-step solvers and low step-sizes. By means of our 
algorithm we can eliminate these components. So we are able 
to use the classical Runge-Kutta method, whereas we have 
performed the calculation with an approximately 20 times 
lower step-size. In comparison with the original system the 
calculation time of the reduced models is approximately 30% 
lower. It turns also out that the solution of the averaged 
system has in the case of a state variable, which is perturbed 
by highly oscillatory parts, the character of an averaged 
solution. If these perturbations decay, the solution of the 
reduced system follows the solution of the original system. In 
order to eliminate the high oscillatory parts of the solution, 
we have tried to find reduced systems at which eigenvalues 
possess a minimum magnitude. Since the nonlinearity change 
the Jacobian, the eigenvalues depend on the nonlinearity. So 
the order of the reduced systems changes between two and 
three (Fig. 6). Especially during start-up there is a rapid 
change between subsystems of different orders. The reader 
should also note that in this example a transformation by the 
Jordan canonical form is very difficult. The transformation 
matrix has a condition of approximately 8.6 10-4. In contrast, 
by using our approach which is based on a complex Schur 
decomposition, T possesses in the domain of interests a 
condition of 0.1. For the estimation of the condition we have 
used the rcond routine of LAPACK [23] which is also in 
Matlab implemented. 

     
Fig. 5.  Solution of the highly perturbed current z1 of the complete model as well 
as “averaged” solutions of reduced systems.  

 
Fig. 6.  The voltage z8 possesses only high oscillatory parts during start-up which 
decay very fast. 

  
Fig. 7.  Dimension of reduced systems during the first period. 

Of course, we have demonstrated only fundamentals of an 
approach for local reduced order modeling. In order to 
increase the efficiency several improvements are needed. 
During the validity of a local slow manifold as many as 
possible integration steps must be performed. Furthermore, 
especially in the case of very high dimensional systems 
scaling [19] as well as balancing methods [24] are necessary, 
in order to guarantee the quality of the reduction. 



VII.  CONCLUSIONS 

In this paper we have presented a systematic procedure for 
a local state space reduction of nonlinear electrical power 
systems. Because of its simple formula reduced order 
modeling now can be used in practice with a minimum of 
knowledge about the underlying mathematical methods and 
the properties of particular nonlinear power systems. By using 
this methodology it is possible to benefit the opportunities 
which are provided by model reduction methods: the 
calculated subsystems can be analyzed easier and simulated 
faster than the complete model. This follows from lower step-
sizes and no need for multi-step solvers as well as the 
dramatic reduction of the number of equations. So the 
implementation of this approach in simulation and analysis 
software is possible. Of course, for large scale systems this 
approach should be improved of scaling and balancing 
methods as well as clustering techniques for the identification 
of relevant groups of eigenvalues. However, the most 
substantial reduction of the computational effort can only be 
achieved, if even more knowledge about power systems is an 
integral part of this methodology. 
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