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 Abstract-- The classical approach for solving control systems 

in EMTP is to insert one-time-step delays for breaking feedback 
loops when one or more nonlinear functions are encountered. 
Although this approach may remain acceptable for several well-
behaved cases, it provides a non-simultaneous solution for a 
nonlinear system. Fast varying components may create 
instabilities in such a solution and/or simply end up into a wrong 
operating region.  In some cases, it imposes severe limitations on 
the integration time-step for minimizing delays. This paper 
presents a new approach based on a Jacobian matrix for 
eliminating numerical delays in the solution of control systems.  
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I.  INTRODUCTION 
In EMTP type computer programs, control systems are 

represented using high-level blocks. These are also control 
blocks. An example taken from EMTP-RV [1][2] is shown in 
Fig. 1. Similar approaches are used in other applications. 
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Fig. 1 Block-diagram example for control system representation 

A typical primitive library of control blocks includes 
devices such as limiters, integrators, transfer functions and 
generic equation blocks. In addition to modeling power 
system control functions, these blocks can be used to solve 
algebraic-differential equations for user-defined models. 
Contrary to standard control system models, user-defined 
modeling is mathematically more demanding since it may 
include several nonlinear loops and complex interactions 
between several sets of equations.  

Contrary to power system devices, control system devices 
have fixed orientation due to given inputs and outputs.  

At each simulation time-point t, the generic system of 
equations for an arbitrary control system can be written as: 
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  (1) =Ax b
Bold characters are used to denote vectors and matrices. All 
controls signals are listed in the unknowns vector x, the matrix 
A can be seen as the matrix of constraint equations on control 
signals and b is the vector of known fixed quantities and 
history variables. History results from the discretization 
process required in some control blocks (devices). The 
trapezoidal integration method can be used for discretization. 

The solution of (1) is straightforward if all devices in a 
control system or in a group are linear. This is however 
seldom the case. In the example of Fig. 1, the feedback loop 
device Fm1 may be a nonlinear function and Fs1 may also 
become nonlinear if anyone of its limits is exceeded or if its 
reset signal is applied. 

A simple and widely used approach [3] is to insert one-
time-step delays for breaking feedback loops when one or 
more nonlinear functions are encountered. Although this 
approach may remain acceptable for several well-behaved 
cases, it provides a non-simultaneous solution for a nonlinear 
system. Fast varying components may create instabilities in 
such a solution and/or simply end up into a wrong operating 
region.  In some cases it imposes severe limitations on the 
integration time-step for minimizing delays. User-defined 
modeling using control blocks as a general purpose solver 
environment is particularly more sensitive to delays since in 
the majority of cases it requires a simultaneous solution for 
model equations. 

This paper presents a new approach for eliminating delays 
in the solution of control systems. The complete system of 
control equations is formulated using a Jacobian matrix and 
solved through an iterative process. All types of nonlinear 
functions can be represented. Re-solve problems for reset 
functions and hard limiters and transposition into a linear 
solver are also analyzed. 

The new approach provides two solution methods, one 
fully iterative and one non-iterative. Both methods are 
demonstrated using simple cases and the user-defined 
modeling of a complete asynchronous machine model. 

II.  ORDERING OF EQUATIONS 
Since the initial introduction of TACS [3], the number of 

significant contributions in this field has been limited. In 
addition to simply adding delays to break nonlinear feedback 
conditions, it has been suggested to enforce ordering strategies 
[4]. This scheme can be explained with the simple example of 
Fig. 2 taken from a turbine-governor system.  
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Fig. 2 A limiter loop example 

If the transfer function fs is replaced only by its gain of 2 
for simplifying the presentation, then the equivalent of 
equation (1) for this diagram is given by: 
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It is assumed that the input to the sum is 10 at the particular 
solution time-point. The signals named in the x vector are the 
output signals of the corresponding blocks with stepx  being the 

input signal to the sum block. Since stepx  is known it is 

ordered first. The output signal of the limiter limx  is forced to 
appear next so that it is known before solving for the 
remaining blocks. It is therefore related only to the forcing 
input. This technique works with only one limiter in the loop, 
if an extra limiter appears on the output of fs, its limiting 
action will not be detected by the block lim and the answer 
will be incorrect. 

If the lim block is replaced by a nonlinear function, then the 
b part of equation (2) will contain a nonlinear function of the 
form . Since this function cannot be directly included 
in the A matrix, it must evaluated separately from the previous 
time-point solution for 

( lossf x )

lossx  and creates the time-step delay. 
As explained earlier, the time-step delay approach (delay-

based solver) can be acceptable in well behaved cases. 
Although it will not give the exact solution, the error can be 
minimized by selecting smaller time-steps. The actual control 
system diagram may become elaborate and use several 
feedback loops and overlapping between feedback groups. In 
cases where the automatically inserted delays are insufficient, 
a common practice is to insert delays manually to force correct 
simulations. A typical consequence is a delayed solution 
accompanied in some cases by initial oscillations [4]. 

There are cases where the time-step delay approach will 
not work and a simultaneous solution is compulsory. In the 
example of Fig. 3, Fu is a nonlinear function given by  ( G  
is the input signal), the Gain value is set to 1 and the input to 
sum is assumed to be a constant value of 10. It is the block-
diagram representation of: 
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Even if the nonlinear block is solved first and a delay is added 
to its output, this system will encounter numerical overflow 
and the value of  will go to infinity. G
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Fig. 3 Nonlinear test case 

III.  NEW METHODS 

A.  Iterative method 
Based on the fact that equations such as (3) have a solution 

when a Newton method is used, the contribution of this paper 
is to implement such a method for solving generic control 
systems in EMTP. It is briefly recalled that in the most general 
context the solution of a nonlinear function ( ) 0=f x  can be 
found using an iterative procedure with a Jacobian matrix: 
 ( ) ( ) ( )( ) 0k k k+ =f x J ∆x  (4) 
where  is the Jacobian matrix and  is the iteration count. 
In the case of a control system the solved function is given by 
equation (1): 

J k

 ( ) = − =f x Ax b 0  (5) 
It can be demonstrated that the calculation of the differential 
of (5) is achieved by finding the linearization of each 
nonlinear function for the last iterative solution vector ( )kx . 
Since ( ) ( ) ( )1k k+ k− =x x ∆x , equations (4) and (5) can be 
combined to give: 
 ( ) ( ) ( ) ( ) ( ) ( )1k k k k k k+ = − +J x J x Ax b  (6) 
The  part includes the actual evaluation of nonlinear 
functions. By using the linearization principle, equation (6) is 
equivalent to: 

b

 ( ) ( ) ( )1ˆ k k k+ =A x B  (7) 
Matrix  rows are different from for nonlinear device 
equations and identical to  for linear devices. Due to the 
resulting cancellation of terms in the right hand side of (6),  
vector  holds the y-axis intercepts of line equations at 
linearization points. This is in addition to existing determined 
constants and history terms.  
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It is noticed that equation (7) is applicable also to 
multivariable nonlinearities. This is the case when a nonlinear 
device, such as f(u) has several inputs as shown in Fig. 4 
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Fig. 4 Multivariable nonlinearity 

When an f(u) device contains generic mathematical 
expressions, then its partial derivatives are obtained from 
input variable perturbation. 

Equation (7) provides a simple transition from the original 
linear formulation (1).  If ‘hard’ nonlinearities such as limiters 
and reset conditions are used, then the matrix  is simply Â



modified to account for changes of condition. The hard limiter 
changes from a simple gain to a constant when a limit is 
reached. In view of the fact that an iterative process is used 
and all nonlinear functions are given an iteratively updated 
linearized equation, all delays are eliminated.  

B.  Non-iterative variant 
A variant to the above proposed method is to use 

linearization, but cancel the iterative loop. Device 
linearization is updated only at each new solution time-point. 
This new non-iterative approach is particularly more 
justifiable when the integration time-step is sufficiently small. 
An extra step is needed to account for hard nonlinearities. 
When a hard nonlinearity is encountered the system is simply 
re-solved until no more events are detected. Correct 
initialization is achieved by automatically turning on the full 
iterative method at the first time-point t=0 solution. The main 
advantage over the previous method is computational speed 
when comparable precision can be achieved for the same 
integration time-step. 

C.  Ordering 
With the proposed approach, forced ordering is no more an 

issue. In a generic control system, however, various 
topologies can still benefit from ordering to increase 
computational speed and improve convergence properties. 

The following grouping and sequencing approach has been 
adopted in the practical implementation of this new method. A 
list of predecessors of each signal is first obtained by 
accumulating the explicit and implicit signal dependencies of 
a block-diagram. This information is used for separating the 
equations into an oriented set of groups, each group 
containing only coupled equations. The groups are not looped 
with each other and can be solved independently provided that 
all groups are solved in the correct sequence with respect to 
each other. The algorithm relies on graph theory theorems that 
guarantee correctness and optimality for grouping and 
sequencing. 

Some groups may be only sequential (no looping), in 
which case the iterative solver is not needed since the solution 
is straightforward. If a group is completely linear, but contains 
loops, it can be solved directly without iterations. 

IV.  EXAMPLES 
In the following test cases, Method 1 is the new non-

iterative method with nonlinear device linearization and re-
solve procedure for events. It is a variant of Method 2. 
Method 2 is the new fully iterative method. The proposed 
methods have been fully implemented and tested in EMTP 
(EMTP-RV version). 

A.  Test case 1: nonlinear function 
The first test case is shown in Fig. 3. This test is designed 

to stress the numerical qualities of the proposed methods. 
When varying the input signal within the existing solution 
range, both methods 1 and 2 give the correct answer even 

when larger time-steps are used. A time-step of 10  is used 
in Fig. 5. A step function is applied to the input signal at 

to test the behavior of Method 1 for non-smooth signals. 
When the step value is sufficiently small, Method 1 is still 
able to follow, but shows a slight overshoot. For a larger step 
value, Method 1 goes into numerical overflow. 
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Fig. 5 Solution for the output of Gain block shown in Fig. 3 

B.  Test case 2: PLL problem 
The PLL circuit shown in Fig. 6 is taken from [5]. It has 

nonlinear devices and feedback loops. The input u is stepped 
up at 125m . If this system is simulated using a delay-based 
solver, the output will not be able to follow and results into a 
numerical noise as shown in Fig. 7 (y is the PLL output and F 
is the input function). As expected, when the time-step is 
reduced from 10  to 1µ , the solver is able to recover from 
the step change.  
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Fig. 6 PLL diagram 
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Fig. 7 PLL simulation results with a delay-based solver 

Contrary to the above, the fully iterative Method 2 is 
perfectly capable of following the input waveform F with a 

 time-step. Furthermore, Method 2 is capable of 10µs



maintaining stability and precision with time-steps of 10  
and even . Results with  are shown in Fig. 8. 
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Method 1 behaves correctly up to 10 . Fig. 9 compares 
the PLL amplitude from Method 1 against Method 2. 
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Fig. 8 PLL simulation with Method 2 
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Fig. 9 PLL output amplitudes with Methods 1 and 2 

C.  Asynchronous machine model 
The objective of this test case is to create a user-defined 

asynchronous machine model using control diagram blocks. 
There are several advantages from the user point of view for 
creating such models, since it provides an open architecture 
design and allows implementing various specific 
functionalities. Validation is provided by comparison with an 
existing and validated EMTP (EMTP-RV version [1][2]) 
hard-coded asynchronous machine model. The hard-coded 
model benefits from a tailored programming from reduced 
symbolic formulations. It also possesses internal iterative 
loops for simultaneous solutions in all machine variables. 

The design with the hard-coded model is shown in Fig. 10.  
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Fig. 10 Asynchronous machine model, hard-coded version 

The user-defined model simply replaces the wound-rotor 
ASM device shown above, by a subcircuit containing machine 

equations assembled using control devices (function blocks).  
The entire design is too large to be shown in this paper. 

Only some parts are presented below. It is a classical model 
with the equivalent circuit representation of the induction 
machine in the synchronous reference frame. The d-axis 
equations taken directly from the graphical user interface are 
shown in Fig. 11. The subscript s is for stator quantities, it 
also means quantities seen on the stator side; the subscript r is 
for rotor quantities. Some signals are connected by name for 
better legibility. It is noticed that generic f(u) function blocks 
are used for a direct mapping of model equations. A similar 
diagram is assembled for the q-axis.  
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Fig. 11 Block diagram machine model, d-axis equations 

The nonlinear function shown in Fig. 12 is used for 
including the saturation of leakage reactances (stator and 
rotor). It is given by [5]: 
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with the factor satF  given by: 
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satI  (6A in this example) is a threshold value for applying this 

factor and max( , , )ar br crI i i i= . Similar equations are used 
for the stator. 
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Fig. 12 Modeling of leakage reactance saturation (rotor side) 



Since the underlying solver eliminates numerical delays, 
the setup of the entire design is straightforward and simplifies 
the mapping of model equations into actual control blocks. 
This is a major advantage. A delay-based algorithm [3] cannot 
be used to simulate this model directly. 

Simulation results with a  time-step are almost 
identical when Methods 1 and 2 are compared with each other 
and verified with the hard-coded model (reference) of Fig. 10. 
Even when the time-step is increased to 50 , both Methods 
1 and 2 continue to maintain precision. The mean number of 
iterations in Method 2 is below 2 after an initialization count 
of 10. Since Method 1 does not use iterations after the initial 
startup, it remains more efficient. Experiments with a large set 
of cases indicate that Method 1 can be given the default status 
and remains acceptable in the majority of simulations. 

5µs
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Simulation waveforms of the machine are shown in Fig. 13 
for a time-step of 50 . Methods 1 and 2 are almost identical 
to the reference (hard-coded) model. This observation is also 
confirmed for the electromagnetic torque waveforms shown in 
Fig. 14. 
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Fig. 13 Rotor current (A) 
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Fig. 14 Electromagnetic torque 

If the control system equations are solved with a one-time-
step delay with network equations, then some phase error will 
result in the user-defined equations. This phase error has been 
completely eliminated in the above presentation by providing 
the control equations with network Thevenin equivalents at 
interfacing points. These equivalents are automatically 
calculated and updated at each solution time-point. 

V.  CONCLUSIONS 
This paper contributed a new approach for the computation 

of control system equations in the simulation of 

electromagnetic transients. The new approach allows 
programming two new methods. A fully iterative method and 
its non-iterative variant have been demonstrated of being 
capable to eliminate numerical delays in generic bloc-
diagrams with multiple feedback loops and nonlinearities. 
Although the fully iterative method remains superior in all 
cases, the non-iterative variant is faster and can be confidently 
used in a large variety cases. 
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