
Mutual Ground Impedances between Overhead and 
Underground Transmission Cables 

 
F. A. Uribe, member, IEEE     

  
 Abstract-- Overhead and underground cable transmission 

systems are often sharing a common right of way with another 
supply services as oil, gas, water and communication lines. When 
a phase-to-ground fault occurs, high transient induced over-
voltages appear from short circuit currents to ground. 

An accurate calculation of mutual impedances between 
overhead lines and underground cable systems, both with earth-
return is required. A problem here is that mutual impedances 
are given by the Pollaczek coupling integral, which is highly 
irregular oscillatory and does not possess an analytic closed-form 
solution. 

Recently, the author developed an algorithmic strategy to 
solve Pollaczek integral for calculating ground-return 
impedances of underground transmission cables. In this paper an 
extension of this algorithm is applied for the solution of the 
Pollaczek coupling integral at a wide range of applications. 

Finally, the obtained result set is used in the assessment of 
approximated formulas issued by Lucca and CCITT. 
 

Keywords: Mutual earth-return impedances, Pollaczek 
coupling integral, earth effects, underground transmission, aerial 
transmission. 

I.  NOMENCLATURE 
 

ω  angular frequency, 
µ0  magnetic permeability of vacuum and air, 
σ  soil conductivity, 
d  Distance between cables, 
x  horizontal distance between cables, 
p  complex depth of the Skin Effect layer 

σωµ0j1p = , 
h1  Height of the aerial conductor, 
h2  depth of the underground cable, 
ξ  cable depth “h2” normalized by the Skin 

Effect layer thickness “|p|”, 
η  horizontal distance “x” normalized by the 

cable depth “h2”, 
ζ  height of the aerial conductor “h1” 

normalized by the cable depth “h2”, 
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II.  INTRODUCTION 
FTEN overhead lines and underground transmission 
systems share right of way with another supply services 

such as oil, gas, water pipes, communication lines and 
electrified railway systems [1-4]. 

At transient as well as at steady state operation, power 
transmission cables induce voltages and currents on these 
other systems. Moreover, the aerial conductors in the 
proximity could be a part of a metallic fence and, then, the 
induced transient poses a safety hazard. To analyze induction 
levels, it is required to calculate the mutual inductances as 
functions of frequency between transmission cables and the 
other systems. 

In 1926 Pollaczek postulated mathematical expressions for 
calculating electromagnetic fields inside an imperfectly 
conducting ground due to a buried thin filament of current [5]. 
In 1927 Pollaczek presented a formulation for calculating 
mutual earth impedances between overhead and underground 
transmission systems [2]. The latter case is the main interest in 
this paper. 

Both Pollaczek solution sets are given in the form of highly 
oscillatory integrals that do not possess analytic closed-form 
solutions [2, 5-7]. The formula for calculating impedances of 
buried conductors has received far more attention than the one 
between buried and overhead conductors. 

In the practice, power engineering analysts use 
approximate formulas. Problems with approximate solutions 
of Pollaczek integrals are that their accuracy levels are not 
well determined. 

Recently, the author has proposed an algorithmic solution 
to the Pollaczek integral arising when evaluating mutual 
impedances of two buried conductors [6, 7]. This solution is 
numerically efficient, guarantees convergence and the error 
level is bounded [6, 7]. In this paper, an extension of the 
algorithmic solution is presented for the Pollaczek integral 
arising in the evaluation of the mutual impedance between a 
buried and an aerial conductor. 

Finally, the extended algorithm is further applied at 
evaluating the accuracy levels of the approximate formulas by 
Lucca [3] and by CCITT [4]. 

 
III.  COUPLING BETWEEN OVERHEAD AND UNDERGROUND 

TRANSMISSION SYSTEMS 
Fig. 1 shows a hybrid transmission system composed by an 

overhead conductor and an underground power transmission 
cable. Assuming an imperfectly conducting ground, magnetic 
permeability in both air and ground equal to the vacuum 

O



(µ1≅µ2≅µ0), homogeneous ground, and that the displacement 
currents in the ground can be neglected, the mutual earth 
impedances are given by the following Pollaczek coupling 
integral [1, 2]: 
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Now, after some algebraic manipulations, (1) is transformed 
into a more suitable form for its numerical evaluation [6, 7]. A 
normalized dimensionless parameter representation of the 
Pollaczek coupling integral is: 
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the dimensionless parameters ξ=h2/p, η=x/h2 and ζ=h1/h2 are 
related to the physical configuration of the system in Fig. 1. 
Functions F(u) and G(u) are independent of the physical 
geometry of the system and are solutions of the primitive 
integrand function “(u2+j)1/2” given in [6] and in a detailed 
form in [7]. Other advantage of this representation is that 
integral (2b) is defined inside the rank [0,∞]. Notice that both 
Pollaczek underground and coupling integrals are represented 
in four factors. The first two factors are of the damping type, 
while the second two are oscillatory. The first damping factor 
depends on functions F(u)-u and G(u), which are decreasing 
monotonic. The second factor is a pure damping exponential 
function. The third and the fourth factors are irregular and 
regular oscillatory functions, respectively. Because of their 
function arguments are identical than for the Pollaczek 
underground integral case, their zero crossings can be 
identified by using the rules in the algorithmic strategy 
proposed in [6, 7]. 

The differences between both Pollaczek integral schemes 
can be summarized in the following relationship which is 
valid for the case ζ=0: 

( )( ) ( )( )( ) ( )3auFuζξexpuFξexp +⋅−≅⋅−  

Right hand side of (3a) means that Pollaczek coupling integral 
is a particular case of Pollaczek underground earth impedance 
integral. When ζ≠0 introduces and additional damping factor 
to the integrand as: 

( )( ) ( )3buζξexp ⋅−  

The compression level of (2b) depends on parameter ζ. The 
more general application case considered in this paper occurs 
when ζ=0.1. Values greater from this limit are damped sub-
cases of the first one. 

As an example, consider the integrand pattern of J(ξ,η) 
shown in Fig. 2. Two values of ζ=0.1 and ζ=1 are compared 
with parameter values ξ=0.1 and η=100 inside the u≤4 range. 

 
Fig. 1 Hybrid transmission system composed by an overhead aerial conductor 
and an underground power cable buried in an imperfectly conducting ground. 

IV.  EXTENSION OF THE ALGORITHMIC SOLUTION OF THE 
POLLACZEK INTEGRAL 

The algorithmic solution of the Pollaczek integral for 
calculating underground cable earth-impedances [6] has been 
extended in this paper to solve the Pollaczek coupling integral 
in the following two steps. 

First, consider the modified truncating criterion for the pure 
damping exponential function in the right hand side of (3a). 
The second step is to include the modified regular and 
irregular oscillating factors in the new truncated range 0-umax. 

Integrating the new second factor in the complete range 
yields the following partition of the u rank: 
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the relative error of using this approximation is: 

( )( ) ( ) ( )4b1ζξu1ζξexpε maxr +⋅+⋅−=  

For an arbitrary fixed value of εr, the corresponding umax is: 
( ) ( )4c1u e +⋅= ζξλmax  

where 
( )( ) ( )4d1ζξεlogλ re +⋅−=  

A truncating error εr can be found by refining the value of λe. 
A value of λe=10, has been determined empirically 
satisfactory in this paper applications [6, 7].  

The regular and irregular oscillations in (2b) depends on 
the magnitude of parameters η and ξ, respectively. 

The former are introduced to (2b) by the cosine term. This 
term does not oscillate if : 
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The latter are introduced to (2b) by the complex exponential 
function, when: 
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Fig. 2 Pollaczek coupling integrand compression dependency on parameter ζ 
inside the u≤4 range.   
 

The total zero crossings of (2b) in the new truncated range 
[0, umax]can be identified sorting the regular and irregular 
oscillations due to (4e) and (4f) [6,7]. 

Now, the dimensionless variables ξ, η and ζ depends on the 
physical quantities h1, h2, ω, ε, µ, σ and x. 

A broad application range for these physical quantities is 
shown in Table I. Most of practical engineering application 
cases lie within these variable ranges. Subsequently, these 
ranges are used to establish the dimensionless parameter 
ranges of ξ, η and ζ which are given in Table II. 

The extended algorithmic methodology was applied to 
solve the Pollaczek coupling integral 103 times with 102 
logarithmic spaced samples of ξ and 10 logarithmically spaced 
samples of η and the more general case for variable ζ=0.1 it is 
considered. Any value greater than this limit are damped sub-
cases of the first one. 

The time required for doing this task on a Pentium 4M at 
1.6GMHz with 1.0 GB of RAM running MATLAB V. 6. 5, was 
slightly less than 1s with N=256 (Number of samples per 
integration test). Figs. 3a and 3b depicts the obtained results of 
solving the integral J(ξ,η) in (2b). These results have been 
further tested by increasing N up to 1024. The differences 
with N=256 are well below 0.01%. 
 

TABLE I 
APPLICATION RANGES FOR PHYSICAL VARIABLES 

 
 

TABLE II 
RANGES FOR NORMALIZED DIMENSIONLESS PARAMETERS 

 

  

  
Fig. 3 Pollaczek induction integral solutions for ranges inside Table II. 

a) Curves of ℜe{J(ξ,η)}, b) Curves of ℑm{J(ξ,η)}. 

V.  NORMALIZED COUPLING IMPEDANCES 
The normalized coupling impedance concept is introduced 

now as [6, 7]: 
( ) ( )a52ZZ 0EE µωπ ⋅⋅

=
∆  

Thus, the Pollaczek coupling integral is re-defined as: 
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Approximation (5b) extracts dimensional physical variables, 
allowing the possibility to handle general application ranges 
for ξ, η and ζ. 

The very intricate problem of solving both Pollaczek 
integrals has motivated the search for new closed-form 
approximations, which are preferred by engineering analysts 
than using numerical algorithms or methodologies, that 
sometimes are time consuming and cumbersome. 

VI.  ASSESSMENT OF CLOSED-FORM APPROXIMATIONS 
The broad range solution set obtained from the normalized 

Pollaczek coupling integral (5b) it has been used in this paper 
section to assess two of the most often-used formulas for 
calculating mutual earth-return impedances between overhead 
and buried lines. The first one is the formula proposed by 
Lucca [3] and the second the one proposed by the CCITT [4].  



LUCCA formulation 
On a recent publication Lucca developed his well-known 

closed-form solution for calculating mutual impedances 
between overhead and buried lines, both with earth return [3]. 
Basically, Lucca considered a two step approximation. The 
first step is based in the utilization of the theory of images 
following the work by Wait and Spies [3]. The second step 
consists in the cancellation of the oscillatory exponential 
factor of the integrand. The latter step is very similar to the 
one proposed by A. Ametani for approximating underground 
cable earth impedances by using the Carson’s integral [1]. 

The formula proposed by Lucca on its original physical 
variables as in Fig. 1 is [3]: 

( )a6
R

3xy
3

y2
R
R

2
jZ 6

12

22

3
12

120
LE























 −
⋅−








=− γπ

ωµ ln

where 
2

21
2

12 yyxR )( −+=  

σωµ0
2

e jk −=  
22

12 xyR +=  
γ=j⋅ke 

γ
2yyy 21 +−=  

Transforming (6a) into the context of the dimensionless 
parameters in Table II, and of the normalized coupling 
impedances, we have: 
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Expression (6b) is a function of the dimensionless variables ξ, 
η and ζ only. 
 
CCITT recommended formula 

The CCITT in [4] (a specialized paper concerning 
telecommunication lines protection), recommended the use of 
the following approximate formula for evaluating mutual 
impedances between overhead and buried lines: 

( )c6
3

yykj2
Rkj

8511
2

jZ 21e

12e

0
CE 









 +⋅

+







⋅⋅

=−
)(.ln

π
ωµ

Expression (6c) is presented on its original variables [4]. Now, 
it is convenient to represent (6c) into the dimensionless 
variables given in Table II. 

According to the normalized impedance concept stated in 
(5a) we have: 
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Expression (6d) also is a function of the dimensionless 
variables ξ, η and ζ only. 

In order to test the normalized impedance approximate 
formulas (6b) and (6d), first consider an application example 
reported in section 3 of reference [3]. In this case, the 
conductivity of the soil is σ=0.01S/m, the height of the aerial 
conductor is h1=15m, the depth of the buried conductor is 
h2=1m, the horizontal distance between conductors is linearly 
sampled 100times for values inside 0<x≤2000m range. The 
frequency values for this test are f1=50Hz, f2=500Hz and 
f3=5000Hz. 

The results obtained for ZE in [3] have been reproduced in 
this paper through ZE as a first application example. Fig. 4 
depicts the real and imaginary curves for each frequency test 
using the Pollaczek algorithmic solutions and the Lucca 
formula [3]. The concordance between both set of curves are 
in a good agreement. Fig. 5 shows the relative percent error 
level (δ) calculated for the first application case along the 
horizontal distance between the aerial and the buried 
conductor. The relative error level is evaluated as:           

( )e6100
f
f

1
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aprox ×−=δ  

where faprox is the approximated function and fexact is the 
function considered as exact for the calculation.  
 
 

 
 

 
 

Fig. 4 ZE in dependency with the horizontal distance for the first application 
example [3]). a) Curves of ℜe{ZE}, b) Curves of ℑm{ZE}. 



 
 

 
Fig. 5 Percent relative error level for the first application case between 
Pollaczek algorithmic solution and the formula proposed by Lucca [3]. a) 
Curves of ℜe{δ}, b) Curves of ℑm{δ}. 
 

It can be noticed from Fig. 5a and 5b that the maximum 
error level occurs in the imaginary component for distances 
higher than 600m. 

Another methodology proposed here to evaluate relative 
error levels per ranges on using closed-form approximations is 
through the use of contour maps [6, 7]. The maps are 
graphical tools generated for universal application cases, 
because of they are referred to the dimensionless parameters 
ξ, η and ζ. For the first here considered application example, 
the value of ζ=15 has been applied varying parameters ξ and 
η according frequency and horizontal distance is moving in 
the test according data provided in this section. Fig. 6a depicts 
the real component for the contour map, while Fig. 6b shows 
the corresponding imaginary one. These maps classify four 
error regions inside 0≤δ<10%. From Fig.6b it can be noticed 
that an error of 10% is more noticeable as R4 almost in the 
entire plot. 

As a second application example, consider the normalized 
parameter ranges given in Table II. For a more general case 
the Pollaczek algorithmic solution, the Lucca [3] and CCITT 
[4] closed-form approximations, have been compared here 
through contour error maps. Results of these comparisons are 
plotted per components in Fig. 7 and 8, respectively. 

In Fig. 8a the real component of CCITT [4] formula 
appears to have an error higher than 10% in almost the entire 
plot. On the other hand the imaginary components between 
both formulas are very similar. Concretely, R1 and R4 
presented more coincidences in Fig. 7b and 8b. 

 
 

 
Fig. 6 Contour relative error maps for the first application example reported by 
Lucca in [3]. a) ℜe{δ}, b) ℑm{δ}. 
 

 
 

 
Fig. 7 Broad range contour relative error maps of Lucca formula [3]. 
a) ℜe{δ}, b) ℑm{δ}. 



 
 

 
 
Fig. 8 Broad range contour relative error maps of CCITT formula [4]. 
a) ℜe{δ}, b) ℑm{δ}. 

 
Advantages of using contour maps as graphical tools for 

analyzing error levels of closed-form approximations, is that 
permits the analysis per ranges for each application case. This 
means that for any system configuration it is possible to 
determine by direct substitution on ξ=h2/p, η=x/h2 and 
ζ=h1/h2 the incurred error by using a specific formula.    

VII.  CONCLUSIONS 
The Pollaczek coupling integral for calculating mutual 

impedances between overhead and buried conductors, both 
with earth-return, has been solved in this paper at a broad 
range of applications [2]. 

The presented solution is based on an extension of a 
previously developed accurate algorithm for solving the 
Pollaczek integral for calculating earth-return impedances of 
buried conductors [6, 7]. It has been stated in this paper that 
Pollaczek coupling integral is a particular damped case of the 
Pollaczek buried conductors integral. 

Through using the concept of normalized impedances and 
the dimensionless parameters ξ, η and ζ it has been possible 
to obtain broad range comparisons with two well-known 
closed-form approximations proposed by Lucca [3] and by the 
CCITT [4]. 

Finally, as a graphical tools it has been proposed in this 
paper the use of contour error maps based on the percent 
relative error criterion. The maps represent an aim in the 

evaluation of incurred errors per ranges of closed-form and 
series approximations of formulas for calculating mutual 
impedances between overhead and buried conductors, both 
with earth-return.      
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