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Abstract--This paper discusses the application of Hilbert 

transform based signal analysis techniques to the study of 
subsynchronous torsional oscillations in power systems with 
FACTS controllers. An analysis framework based on the Hilbert 
transform technique, for detection and quantification of 
nonlinear power system behavior is presented. The method is 
based on the Hilbert-Huang technique, which gives a time-
energy-frequency representation of the data and enables the 
analysis of both the nonlinear and non-stationary responses of 
complex power systems to large perturbations. 

The application of these procedures is illustrated on the IEEE 
second benchmark system for the analysis of subsynchronous 
resonance. The nonlinear spatio-temporal behavior of torque 
signals is examined for and it is concluded that power systems 
may exhibit a wealth of nonlinear dynamical characteristics 
including harmonic generation and nonlinear mode interaction. 
 

Keywords: Power system transient stability, nonlinear 
systems, spectral analysis, subsynchronous resonance. 

I.  INTRODUCTION 

HE analysis of transient behavior of power systems with 
Flexible ac Transmission System (FACTS) devices has 

been the subject of extensive study in recent years. FACTS 
devices offer a powerful alternative to increase the stability of 
the torsional modes of oscillation of a power system as well as 
to improve system operating flexibility [1], [2]. 

Of special interest are applications where FACTS devices 
may interact nonlinearly with the torsional modes of vibration 
of large turbine-generators [3]. With the current and future 
availability of an increasing number of nonlinear controllers, 
the onset of system oscillations is becoming more comp lex and 
unpredictable [4]. 

During the past few years there have been a number of 
theoretical studies undertaken for understanding the basic 
properties of the linear system response to small and large 
perturbations. Whilst it is possible to compute nonlinear 
behavior using several techniques, much of the attention in the 
past has been devoted to the understanding of nonlinear 
system performance using a variety of linear techniques [5]. 
The main shortcomings of these approaches are the 
requirements of linearity and stationarity or periodicity which 
render them invalid or uninformative for many applications. 

Somewhat more general alternatives to conventional linear 
analysis are wavelet methods, the theory of evolutionary 
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spectra, and Hilbert transform based signal analysis [6], [7]. A 
remarkably successful approach for studying the nonlinear 
behavior of time series is the Hilbert-Huang technique first 
derived by Huang et al. [8]. With this technique, complicated 
sets of nonlinear, non-stationary data sets can be decomposed 
into finite collections of intrinsic mode functions. 

This paper extends our previous work on the application of 
the Hilbert transform [9] and concentrates on the analysis of 
nonlinear dynamic behavior in power systems with thyristor- 
controlled series capacitors. The application of these 
procedures is illustrated on the IEEE second benchmark 
system for the analysis of subsynchronous resonance (SSR). 
Hilbert spectral analysis is performed on out data files 
generated by nonlinear simulations using the EMTP, but the 
method is quite general and is applicable to any nonlinear, 
non-stationary signal. 

II.  PRELIMINARY CONCEPTS 

A.  The Hilbert Transform 
In this section the use of the Hilbert transform for non-

steady time series analysis is briefly considered. Let ( )u t be a 

real-valued signal. The Hilbert transform, ( ) ,v t is [10] 

 
1 ( )( ) ,uv t P d

t
η η

π η

∞

−∞

= −
−∫  (1) 

where P stands for the principal value of the integral in the 
Cauchy’s sense. The inverse transform is given by 
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This pair of functions could be written in a convolution 
form as 
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Taking the Fourier transform to the kernel of the Hilbert 
transform (HT), ( ) 1/( ),t tπΘ =  yields 
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Applying the convolution to multiplication theorem of the 
Fourier transform results in 

 ( ) ( ) jsgn( ) ( )
F

v t V Uω ω ω⇔ = −  (6) 
allowing the calculation of the Hilbert transform using the 
inverse Fourier transform of (6). Given ( )u t and ( ) ,v t  a complex 
analytic signal can be defined. 

B.  The Analytic Signal and the Hilbert Transform 
Our implementation of the complex analytical signal follows 

T 



that of Andrade et al. [9]. The analytic signal, ( ),tψ  is a 
complex function of time defined as 

 ( ) ( ) ( ).t u t v tψ = +  (7) 
Making a coordinates change from rectangular to polar the 

following expressions are obtained: 
 [ ]( ) ( ) cos ( ) ,u t A t tϕ=  (8) 

 [ ]( ) ()sin ( ) .v t A t tϕ=  (9) 

Hence, the analytic signal can be expressed as 
 j ( )( ) ( ) e ,tt A t ϕψ =  (10) 

where ( )A t  and ( )tϕ  are the instantaneous amplitude and 
instantaneous phase of the analytic signal, respectively, 
defined by 

 2 2( ) ( ) ( ) ,A t u t v t= +  (11) 
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In a similar manner, the instantaneous frequency can be 
expressed as  
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Hilbert analysis provides a method for determining the 
instantaneous power and frequency of a monocomponent 
signal. An extension of the notion of the analytic signal to 
multi-component signals is possible using the empirical mode 
decomposition (EMD) method introduced by Huang et al. [8]. 

C.  The Empirical Mode Decomposition (EMD) Method 
Hilbert analysis is based on a non-causal singular transfor-

mation termed empirical mode decomposition (EMD). In the 
Hilbert-Huang technique approach (HHT), The  procedure to 
extract the intrinsic mode functions (IMF) from the signal is 
known as the sifting process and can be summarized as 
follows: (1) starting with the original signal, ( ),x t  set 

1( ) ( ) ,h t x t=  extract the local minima and local maxima from 

( ) ,ih t  (2) interpolate the local minima and local maxima with a 
cubic spline to form upper and lower envelopes respectively, 
and (3) obtain the mean of the upper and lower envelopes, 

( ),im t and subtract it form ( )ih t  to determine a new function 

1( ) ( ) ( ).i i ih t h t m t+ = −  The above procedure is repeated until 

1( )ih t+ satisfies the criteria of an IMF and then 1( ) ( ).j ic t h t+=  

Once the IMF components have been determined, the 
original signal can be reconstructed using the HT as 
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In the follows that the signal ( )x t  can be re-expressed in 
terms of the Hilbert transform, as 
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Eq. (15) allows the instantaneous amplitude and instantane-
ous frequency to be represented as time functions. 

D.  The Hilbert Spectrum 
The time-frequency distribution of the amplitude is known 

as the Hilbert amplitude spectrum, ( , ).H tω  The total 
amplitude contribution for each frequency value measure is 
given by the marginal spectrum 

0
( ) ( , ) .

T

h H t dtω ω= ∫                           (16) 

Moreover, the energy fluctuation on the signal is provided 
by the instantaneous energy density level, IE, defined as [10] 

2IE( ) ( , ) .t H t d
ω
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For a more detailed explanation of the Hilbert spectra in the 
context of this model, see [11]. 

III.  APPLICATION 

The system under study is the IEEE SBM for computer 
simulation of subsynchronous resonance [12]. Fig. 1 shows a 
one-line diagram of the system illustrating the location of a 
Thyristor-controlled Series Capacitor (TCSC) This system 
represents a 600 MVA, 2 pole, 22 kV turbo-generator supplying 
power through two parallel 500 kV transmission lines, one of 
which is series compensated, to an infinite bus. 

 
Fig. 1.  The IEEE Second Benchmark Model for SSR studies.  

Operating scenarios for SSR analysis included 1) system 
operation with conventional fixed compensation (no TCSC), 
and 2) the TCSC operating in enhanced constant power control 
mode [1], and 55% compensation. The parameters of the SBM 
are taken from [12]. 

A.  Torsional System Model 
The shaft mechanical model of the SBM comprises four 

rotating masses: a high-pressure (HP) turbine, a low-pressure 
(LP) turbine, a synchronous generator (GEN), and a rotating 
exciter (EXC). Fig. 2 shows the mechanical system for the SBM. 
The SBM exhibits two torsional modes at frequencies 23.63, 
and 31.97 Hz. 

 
Fig. 2.  IEEE SBM shaft mechanical system. 

Table I gives the frequency and damping of torsional mode 
eigenvalues at 55% compensation. We next examine the onset 
of nonlinear behavior using both Fourier–based spectral 
analysis methods and Hilbert techniques. 

TABLE I 
T ORSIONAL EIGENVALUES FOR 55% OF SERIES COMPENSATION 

Mode Eigenvalue Frequency 
(Hz) 

Damping 

1 -15.94824 j± 148.45389 23.62717 0.10681 
2 -17.28974 j± 200.87426 31.97013 0.08575 



B.  Nonlinear Time-Domain Simulation Studies 
Detailed transient simulations have been performed in an 

attempt to develop an understanding of nonlinear dynamics. 
The study focuses on the torque amplification phenomena due 
to subsynchronous resonance. 

The fault is a three-phase short -circuit through a fault 
reactance of 0.1 mH applied at 0.17t = s on the high-voltage 
side of the generator step-up transformer, cleared after one 
cycle; this fault excites the torsional modes of the system and 
results in a complex dynamic behavior involving nonlinear 
subsynchronous oscillations. For reference, the peak values of 
the torques are given in Table II. 

 

TABLE II 
COMPARISON BETWEEN THE CALCULATED T ORQUES 

AND THE SBM CASE A T ORQUES 

Torques Simulation 
(pu) 

SBM Case A 
(pu) 

Error 
(%) 

HP-LP 2.0118 1.97 2.1218 
LP-GEN 4.1520 4.02 3.2836 

 

Fig. 3 shows the transient torques resulting from this 
disturbance whilst the corresponding power spectrum of the 
shaft torques is presented in Fig. 4. 

 
Fig. 3.  Shaft torsional responses resulting from system perturbation. 

 
Fig. 4.  Fourier power spectrum of shaft torque signals.  

As expected from eigenanalysis, examination of the power 
spectra in Fig. 4 indicates the excitation of two modes at about 
23.6 Hz and 32 Hz disclosing the presence of torsional modes 1 
and 2. 

C.  Hilbert Spectrum and Instantaneous Frequency 
To analyze the instantaneous attributes of the signals, the 

simulated data was first decomposed into a summation of 
modal components using the EMD technique. Fig. 5 shows the 
first four IMF for each of the torques depicted in Fig. 3. 

For the HP-LP torque record, application of the EMD 
method yields, primarily, one dominant IMF. This essentially 
indicates that the original function can be approximated by a 
single modal function of varying amplitude and frequency; the 
effect is more pronounced for the LP-GEN torque in Fig. 5b. 

 
(a) 

 
(b) 

Fig. 5.  The resulting intrinsic mode functions for the shaft torque 
signals; a) HP-LP shaft section, and b) LP-GEN shaft section. 

Further insight into the nature of temporal behavior is 
obtained from the analysis of the instantaneous attributes of 
each IMF.  

Fig. 6 shows the Hilbert spectrum of the torque signals. The 
nonlinear fluctuations observed in the plot reveal the presence 
of modulation between spectral components and indicate 
nonstationarity. Here, an IMF is associated with a local time 
scale of the data and can be amplitude and/or frequency 
modulated and even non-stationary. The first IMF is 
composed of the smallest time scale that corresponds to the 
highest frequency or fastest variation of the data; the 
frequency decreases as the index i  of  IMFi  increases. 

For the HP-LP torque, examination of the Hilbert marginal 
spectrum for IMF in Fig. 6a shows a temporal behavior in 
which the frequency of the IMF oscillates about 28Hz (the 
average frequency of torsional modes 1 and 2) and 21 Hz, 
respectively, with varying amplitude and frequency, 



suggesting nonlinear interaction between these modes. 
Moreover, the Hilbert marginal spectrum shows the presence 
of a third IMF at about 10 Hz, of essentially constant 
frequency probably indicating sub harmonic modulation of 
IMF2. Analysis of the Hilbert spectrum of the IMF for the LP-
GEN torque record in Fig. 5b leads to similar conclusions.  

 

 
(a) 

 
(b) 

Fig. 6.  Hilbert spectrum of the IMF associated with the shaft torque 
signals; a) HP-LP shaft section, and b) LP-GEN shaft section. 

Also of interest, comparison of Fig. 5a and Fig. 5b reveals 
that non-stationarity is more pronounced in the HP-LP record. 
Thus, for instance, the instantaneous frequency of the IMF 1 
and 2 for the HP-LP record exhibit larger variations than the 
corresponding frequencies for the LP-GEN record. 

D.  Damping of Torsional Oscillations by Means of TCSC 
The general structure of the TCSC used in the studies is 

shown in Fig. 7. To examine the impact of the TCSC on 
torsional damping an enhanced constant-power control mode 
[13] is adopted. In this arrangement, the main control loop is a 
fast current control loop. The controller has a secondary loop 
responsible for power control: the power controller generates 
the current order of the inner (current) controller. This 
arrangement provides flexibility and can be made to respond 
extremely fast to large system disturbances, whilst at the same 
time provide the necessary slower response for electrome-
chanical modes of oscillation. 

Figure 8 shows the transient torques and the total (line) 
TCSC current. For completeness, the line current with 
conventional fixed compensation is also shown. 

 
Fig. 7.  Block diagram of the enhanced TCSC control structure. 

 

 
(a) 

 
(b) 

Fig. 8.  a) Shaft torques, and b) Total TCSC current following a system 
contingency. 

 
Examination of the time domain results in Fig. 8 shows that 

the use of a TCSC improves SSR behavior and leads to a more 
damped system response. This is manifested by decreased 
peak torques (refer to Table III) and more damped oscillations. 
Other simulations reveal that the use of TCSC leads to 
enhanced voltage regulation and can provide additional 
damping to electromechanical power system oscillations. 

In order to further investigate nonlinear effects in the shaft 
torques, Fourier-based spectral analysis methods were applied 
to the shaft torque signals. Fig. 9 compares the power spectra 
of the HP-LP torque and the LP-GEN torque for the case with 
fixed compensation and with TCSC. Simulation results indicate 
that the TCSC has a strong impact on the damping of both 
torsional modes 1 and 2 and may increase nonlinear behavior. 



 

TABLE III 
T ORQUE AMPLIFICATION COMPARISON 

Compensation 
Scheme 

HP-LP 
Peak Torque  

(pu) 

LP-GEN 
Peak Torque  

(pu) 

Torque 
Amplification 

(%) 
Fixed compensation 2.0118 4.1520 106.3823 
Thyristor controlled 
compensation 

0.9789 1.6583 69.4044 

 

 
(a) 

 
(b) 

Fig. 9.  Fourier spectra of the a) HP-LP shaft section, and b) LP-GEN 
shaft section, torque signals.  

Of particular significance: the analysis of the Fourier spectra 
in Fig. 9b shows that the use of TCSC increases nonlinearity. 
Manifestations of this effect are seen in the relatively large 
components of the torsional mode harmonics at 0.50 Hz and 
0.64Hz. Application of the EMD-Huang method to the HP-LP 
torque record yields seven IMF; the first four of them are 
shown in Fig. 10a. Comparison of Figs. 10a and 5a shows that 
the magnitude of IMF2 through to IMF4 relative to IMF1 
increases, thus indicating an increase in nonlinear effects for 
both the HP-LP torque and the LP-GEN-torque. Further, the 
analysis shows clearly that more intrinsic mode functions are 
required to capture the true system dynamics. 

A deeper insight into the nature of this behavior is obtained 
from the Hilbert spectrum in Fig. 11. Careful analysis of the 
spectra indicates that the inclusion of dynamic series 
compensation modifies nonlinear behavior and the time-
varying characteristics of the underlying nonlinear dynamical 
system. 

 
(a) 

 
(b) 

Fig. 10.  Intrinsic mode functions resulting after apply the EMD on a) 
the HP-LP torque signal, and b) the LP-GEN torque signal. 

Finally, the analysis of the Fourier spectra of each IMF 
associated with the LP-GEN record in Fig. 12 indicates that the 
incorporation of a TCSC results in harmonic generation. The 
other peaks in the Fourier spectra in Fig. 12b may indicate 
nonlinear interaction between primary spectral components but 
this is not investigated in this research. It should be noted that 
Fourier analysis of the original data fails to see the lower 
frequency components. Additional studies are needed to be 
conducted to determine nonlinear behavior arising from 
nonlinear modal interaction between control modes and 
electromechanical modes as well as to determine the 
underlying nature of these components. 

IV.  CONCLUSIONS 

Nonlinear characterization of time series data presents 
challenging and difficult problems. Hilbert spectral analysis is 
able to capture the rich dynamics of a complex nonlinear 
spatio-temporal system and offers a much sharper frequency 
analysis. The method is adaptive and requires no prior 
knowledge of system characteristics. 

Results from these studies indicate that nonlinear oscilla-
tions may involve interaction between the fundamental 
frequencies. These interactions result in significant modulation 
of the primary frequencies and lead to nonlinear and non-
stationary behavior. There is also evidence of nonlinear 
interactions between the primary frequency components but 
this is to be further investigated. Further studies are needed to 
assess the nature of the underlying nonlinear behavior. 



 
(a) 

 
(b) 

Fig. 11.  Hilbert spectra of a) the HP-LP shaft section, and b) LP-GEN 
shaft section signals, with TCSC compensation. 
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