
 

  
Abstract— This paper presents a new approach for time 

domain transient simulation of electric power systems with or 
without power electronic (switching) subsystems. The new 
methodology has been named quadratic integration method. The 
method is based on the following two innovations: (a) the 
nonlinear system model equations (differential or differential-
algebraic) are reformulated to a fully equivalent system of 
quadratic equations, by introducing additional state variables, 
and (b) the system model equations are integrated assuming that 
the system states vary quadratically within a time step 
(quadratic integration). 

The proposed method yields an implicit integration scheme 
which demonstrates improved convergence characteristics and 
most importantly improved solution precision. The approach 
also demonstrates superior behavior compared to traditionally 
used methods (such as the trapezoidal integration rule) in terms 
of accuracy and numerical stability properties, especially for 
switching systems. The method is free of artificial numerical 
oscillations. Details about the numerical properties of the 
method are discussed in the paper. 

The proposed methodology and its performance is 
demonstrated on several test systems including (a) linear R-L-C 
electric circuit, (b) system with nonlinear inductance, and (c) 
power electronic circuit (switching system). The methodology is 
expected to be very useful for systems with power electronics 
and nonlinear devices such as saturable transformers/reactors 
and surge arresters. 
 

Index Terms— Nonlinear systems, numerical integration, 
power electronics, power system transient simulation, switching 
systems, time-domain simulation. 

I. INTRODUCTION 
HIS paper presents a new approach for time domain 
transient simulation of electric power systems with or 

without power electronic (switching) subsystems. The new 
methodology has been named quadratic integration method. 
The method is based on the following two innovations: (a) the 
nonlinear system-model equations (nonlinear differential or 
differential-algebraic equations) are reformulated to a fully 
equivalent system of quadratic equations, by introducing 
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additional state variables and algebraic equations, and (b) the 
system model equations are integrated using an implicit 
numerical scheme assuming that the system states vary 
quadratically within a time step (quadratic integration).  

Dynamic simulation is a very important tool in power 
system transient analysis. A great number of numerical 
integration methods have been proposed and used for power 
system time-domain simulation, to transform the ordinary 
differential equations to algebraic equations at each time step 
[1-9]. Such methods include backward Euler, Trapezoidal, 
Simpson’s rule, explicit Runge-Kutta methods, Gear’s 
method, or other linear multi-step methods, mainly of the 
backward differentiation formula (BDF) family. In many 
situations the equations describing the operation of a power 
system are stiff and thus implicit methods are preferred, 
though more expensive in terms of computation time. Among 
these methods the trapezoidal integration is one of the most 
popular ones in network transient analysis, due to its merits of 
low distortion and absolute stability (A-stability). For 
example, the trapezoidal rule is used in EMTP [10-12], Spice 
[10], and Virtual Test Bed [10].  

However, the trapezoidal rule has several drawbacks that 
limit its applicability and indicate that some improvements in 
dynamic simulation methods are needed. Two major 
disadvantages of the trapezoidal integration scheme are its 
low accuracy compared to other existing methods (trapezoidal 
rule is order two accurate) and the artificial numerical 
oscillations that are often encountered, especially in the 
simulation of power electronic circuits, where switching 
events, and therefore discontinuities, occur. Specifically, the 
numerical values of certain variables oscillate around the true 
values. The magnitude and frequency of such numerical 
oscillations are directly related to the parameters of the energy 
storage elements and the simulation time step. In several cases 
this problem is so severe that the simulation results are 
erroneous. 

The problem has been studied in the literature and several 
solutions have been proposed [10-20]. The numerical 
oscillations associated with the trapezoidal integration have 
been identified to result from two different reasons. One type 
of numerical oscillations is caused by an overly large 
simulation time step as compared to the smallest time constant 
in the system [10]. This problem may occur when simulating 
stiff system such as a power system with electric machines 
and power electronic devices. Another type of numerical 
oscillations is caused by step changes in certain state 
variables, i.e. when the trapezoidal rule is used as a pure 
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differentiator [10]. This kind of numerical oscillations are 
often observed in power electronic circuits when inductive or 
capacitive elements are present. Note that since a step change 
in a state variable can be seen as an infinitely small time 
constant, the two types of numerical oscillation are not 
completely unrelated. 

Several approaches have been proposed to suppress these 
numerical oscillations. One popular approach is to use the 
trapezoidal rule with damping [13]. However, this method 
introduces artificial elements in the system that may affect the 
true solution to some extend. Another interesting approach is 
to apply the critical damping adjustment (CDA) scheme, as 
proposed in [11] and [12]. This approach suggest to switch 
from the trapezoidal integration rule to another integration 
method that does not have an oscillation problem, like 
backward Euler, for one time step after the discontinuity and 
then switch back to the trapezoidal rule again and continue 
the simulation normally. This idea has been extensively 
studied and several similar approaches of combination of 
trapezoidal and backward Euler rules have been proposed 
[14-17]. The choice of the implicit Euler method presents 
several implementation advantages and is therefore preferred. 
However, backward Euler method is order one accurate and 
trapezoidal method order two, so the accuracy remains quite 
low. In addition the use of one integration method instead of 
two would be preferable. The Gear’s second order method has 
been proposed as an alternative. The method does eliminate 
such numerical oscillations; however, it is as accurate as the 
trapezoidal method, so it does not provide any advantage in 
terms of accuracy. Furthermore it is not A-stable, which is a 
desired property. Filter interpolation was used in [19] and a 
method based on wave digital filters has been also suggested 
and studied [20].  

This paper introduces a new numerical integration method 
for power system simulation. The method is order four 
accurate and therefore much more precise compared to all the 
traditionally used methods in power system applications. 
Furthermore, the proposed method does not suffer from the 
numerical oscillation problem, contrary to the trapezoidal 
rule. The method is referred to as quadratic integration 
method.  

The proposed methodology is presented in section II of the 
paper. Section III contains a brief discussion on the numerical 
stability properties of the method. Section IV demonstrates 
the method in some simple examples and presents some 
preliminary results. Finally, section V concludes the paper 
and describes the future research steps on the study of the 
proposed methodology. 

II. DESCRIPTION OF QUADRATIC INTEGRATION METHOD 
This section presents the key features of the quadratic 

integration method. The method is based on two innovations: 
First, the nonlinear system-model equations (nonlinear 
differential or differential-algebraic equations) are 
reformulated to a fully equivalent system of quadratic 
equations, by introducing additional state variables and 

additional algebraic equations. This step aims in reducing the 
nonlinearity of the system to at most quadratic in an attempt 
to improve the efficiency of the solution algorithm. It is 
independent of the integration method and thus can be applied 
in combination with any numerical integration rule. Second, 
the system model equations are integrated using an implicit 
numerical scheme assuming that the system states vary 
quadratically within a time step (quadratic integration). 

The basic concept in the derivation of the quadratic 
integration method is illustrated in Fig. 1. In the trapezoidal 
rule it is assumed that the system functions/states vary linearly 
throughout a time step. In this approach it is assumed that 
they vary quadratically within an integration step. Note that 
within an integration time step of length h , defined by the 
interval ],[ tht − , the two end points, )( htx − , )(tx , and the 
midpoint mx  ( ))2/( htxxm −=  fully define the quadratic 
function in the interval ],[ tht − . This quadratic function is 
integrated in the time interval ],[ tht −  resulting in a set of 
algebraic equations for this integration step. The solution of 
the equations is obtained via Newton’s method. Note that by 
virtue of the first step the resulting algebraic equations are 
either linear or quadratic. The proposed method demonstrates 
improved convergence characteristics of the iterative solution 
algorithm. 
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Fig. 1. Illustration of quadratic integration method. 

The quadratic integration method belongs to the category 
of implicit, one-step, Runge-Kutta methods. More specifically 
it is an implicit Runge-Kutta method based on collocation and 
it can be alternative derived based on the collocation theory. 
The basic idea is to choose a function from a simple space, 
like the polynomial space, and a set of collocation points, and 
require that the function satisfy the given problem equations 
at the collocation points [21-23]. The method has three 
collocation points, at )( htx − , mx , and )(tx . It uses the 
Lobatto quadrature rules and is a member of the Lobatto-
methods family. Any Lobatto method with s  collocation 
points has an order of accuracy of 22 −s , and therefore the 
method is order four accurate [21-23]. 

Assuming the general nonlinear, non-autonomous 
dynamical system: 

),( xtfx =& , (1) 



 

the algebraic equations at each integration step of length h , 
resulting from the quadratic integration method, are: 
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Solution of the system via Newton’s method yields the value 
of the state vector )(tx . Note that the value at the midpoint, 

mx , is simply an intermediate result and it is discarded at the 
end of the calculations at each step. 
For the special case of a linear system 

BuAxx +=&  (3) 
the algebraic equations at each time step become: 
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I  is the identity matrix of proper dimension and h  the length 
of the integration step. 

The proposed integration approach has the following 
advantages: (a) improved accuracy and numerical stability, 
and (b) free of fictitious numerical oscillations.  Details about 
the numerical properties of the method are discussed next 

III. NUMERICAL PROPERTIES 
The numerical stability properties of a numerical 

integration method can be studied using the first order test 
equation: 

axx =& . (5) 
Applying the quadratic integration method yields at each time 
step: 
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and therefore: 
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where h  is the integration step. Setting ahz =  yields the 
characteristic polynomial for the method: 
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Note that the eigenvalue a  of the system can be complex, so 
z  is in general a complex number. 

The region of absolute stability is given by the set of values 
z such that 1)( ≤zR . A method is called A-stable if the 

region of absolute stability in the complex z-plane contains 
the entire left half plane. This means that independently of the 
step size 0>h , a stable eigenvalue a  of the original 
continuous time system, with 0)Re( <a , will be still 
represented as a stable mode in the discrete time system, and 
thus the discrete system mimics accurately the behavior of the 
original system, in terms of stability. Note that for 0)Re( <z  

it follows that 1)( ≤zR . Therefore, the proposed method is 

A-stable.  
Furthermore, the absolute stability region is exactly the 

left-hand half complex plane. This property is called strict A-
stability. If the dynamical system under study includes an 
unstable mode, then, irrespectively of the integration step-
size, this mode will remain unstable in the descretized system. 
This is not the case for other methods, for example, the 
backward Euler, or the BDF linear, multi-step methods, where 
the numerical stability domain extends in the right-hand 
plane, where 0)Re( >z . In this case, if the real dynamical 
system includes an unstable mode, this mode could appear as 
stable for some step size, in the discrete system. 

Comparing the quadratic and the trapezoidal integration 
methods the following hold: 
1. Both the trapezoidal method and the quadratic integration 

method are strictly A-stable. The characteristic polynomial 

for the trapezoidal method is 
z
zzR

−
+

=
2
2)( , and it holds 

that 1)( ≤zR  in the whole left-hand complex plane, i.e., 
0)Re( <z . 

2. The trapezoidal method is order two accurate. The 
quadratic integration is order four. Therefore, in terms of 
accuracy, quadratic integration is much preferable. 

3. It has been observed in applications that the trapezoidal 
method can provide an oscillatory solution even for 
systems that have exponential solutions as the simple test 
equation above. This is apparent if one considers the term 

z
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2)(  for a physically stable system. Note that it is 

possible to select the integration time step ( ahz = ), so 
that this term is negative (for example any real value for 
z , with 2−<z ). This can occur when larger integration 
steps are selected. In this case the solution will be 
oscillatory, oscillating around the true solution of the 
problem. In the case of the quadratic integration, the 

corresponding term  
126
126)( 2

2

+−
++

=
zz
zzzR  can never be 

negative as long as )Re(z  is negative, i.e. as long as the 
physical system is stable. This can be a very nice 
characteristic in many applications. 

IV. PRELIMINARY RESULTS 
This section discusses the application of the method to 

some preliminary test cases. The examples are fairly simple 
and their goal is mainly to demonstrate clearly the application 
of the methodology.  

A. Linear RLC circuit 
The first example is a simple series RLC circuit, as 

illustrated in Fig. 2. An AC voltage source of 10Vrms value 
and of 60Hz frequency is the input of the circuit. Using the 
capacitor voltage and the circuit current as the two system 
states the system equations in the standard state space 



 

representation are: 
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where Cv  is the capacitor voltage and i  the circuit current. 

The input u  is )120sin(310 tu ⋅⋅⋅⋅= π , in V. 

 
Fig. 2. Series RLC circuit. 

The system is simulated using the trapezoidal rule and the 
quadratic integration method. The results are also compared 
to the analytical solution of the system, so that the improved 
accuracy of the quadratic integration compared to the 
trapezoidal method is demonstrated. The trapezoidal rule 
yields the algorithm of equations (10): 
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The quadratic integration yields equations (11). 
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Fig. 3 presents a graph of the capacitor voltage for the first 
60Hz-period. Fig. 4 shows one period of the circuit current, 
while Fig. 5 shows the inductor voltage for the duration of the 
simulation, until steady-state is reached. A time step of 0.1 ms 
was used. Note that the results of both integration method and 
the analytical solution are very close and therefore cannot be 
distinguished in the graphs.  

Fig. 6 presents the absolute error of the circuit current for 
the two methods, compared to the analytical solution, for the 
duration of the simulation. The current axis is logarithmic. 
Note that the quadratic integration method is almost three 
orders of magnitude more accurate compared to the 
trapezoidal. 
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Fig. 3. Capacitor voltage computed using trapezoidal (red) and quadratic 
(blue) integration (waveforms are too close to be distinguished in the graph). 
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Fig. 4. Circuit current computed using trapezoidal (red) and quadratic (blue) 
integration. 
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Fig. 5. Inductor voltage using trapezoidal (red) and quadratic (blue) 
integration. 
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Fig. 6. Absolute error of circuit current of trapezoidal (red) and quadratic 
(blue) integration. 
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B. Nonlinear inductor 
The second test-case is an RL circuit with a nonlinear 

inductor. Two cases of nonlinear inductor are studied: (a) an 
inductor which has a high order nonlinear flux-current 
characteristic, and (b) a piecewise linear inductor with two 
linear segments. The circuit in both cases is as in Fig. 7. The 
voltage source is a sinusoidal AC source of 60 Hz and of 10 
V rms. 

R=1 Ohm

 
Fig. 7. RL circuit with nonlinear inductor. 

a) High-order nonlinear inductor 
The circuit equations are: 

ACViR
dt
d

+⋅−=
λ , (12) 

where λ  is the inductor flux and i  the inductor current. The 
nonlinear characteristic of the inductor is 
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The proposed method consists of quadratization of the 
equations first and then application of the quadratic 
integration. The equivalent quadratic system with linear 
differential and quadratic algebraic equations is (note the 
introduction of two additional variables, 1z  and 2z  and two 
additional equations): 
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Fig 8 illustrate the computed inductor voltage and current 
waveforms using the quadratic integration, with a time step of 
10 µs. Fig 9 shows the inductor flux waveform. The system 
parameters are Ai  100 =  and Wb 03.00 =λ . 
 

b) Piecewise linear inductor 
In this case the circuit equations are: 
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The inductance values are mHL  11 = and HL µ 1.02 = . 
The switching occurs at Ai 120 = . Figures 10 and 11 show 
the waveforms of the inductor voltage and current when 
computed using the trapezoidal rule with a time step of 10 µs. 
Note that the results contain numerical oscillations when 
switching from the first to the second model. Figures 12 and 
13 show the same voltage and current waveforms when the 

system is simulated using quadratic integration with the same 
time step. Note that the oscillations are eliminated, when this 
method is used. 

-0.01 0 0.01 0.02 0.03 0.04 0.05
-20

-15

-10

-5

0

5

10

15

20

Time (s)

In
du

ct
or

 C
ur

re
nt

 (A
) a

nd
 V

ol
ta

ge
 (V

)

Current

Voltage 

 
Fig. 8. Inductor voltage and current waveforms of a nonlinear inductor using 
quadratic integration. 
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Fig. 9. Inductor flux waveform of a nonlinear inductor using quadratic 
integration. 

-0.01 0 0.01 0.02 0.03 0.04 0.05
-6

-4

-2

0

2

4

6

Time (s)

In
du

ct
or

 V
ol

ta
ge

 D
ro

p 
(V

)

 
Fig. 10. Voltage of piecewise linear inductor using trapezoidal integration. 
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Fig. 11. Current of piecewise linear inductor using trapezoidal integration. 
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Fig. 12. Voltage of piecewise linear inductor using quadratic integration. 
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Fig. 13. Current of piecewise linear inductor using quadratic integration. 

C. R-L circuit with diode 
The last test case is a simple switching system, as 

illustrated in Fig 14. A sinusoidal voltage source of 10 V rms 
and 60 Hz frequency drives an inductive load through a 
diode. This scenario is often encountered in the simulation of 
power electronic systems. The diode is modeled using a 

piecewise linear model, as described by (16).  
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where Di  and Dv are the diode current and voltage 
respectively. 0DV  is the diode voltage at which the diode 

starts conducting and DR  and Dr  are the diode resistances. 
The numerical values of the above constant are: 

OhmRD  106= , OhmrD  10 1−= , VVD  7.00 =  

The inductance value is mHL  1= . Using the diode voltage 
as state variable the system equations are: 
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A step size of 2 µs is used for the numerical integration, using 
the trapezoidal rule and the quadratic integration. 

 
Fig. 14. RL circuit with diode. 

Figures 15 through 18 show the diode voltage and the 
voltage across the inductor. When the trapezoidal integration 
is used severe numerical oscillations appear each time the 
diode is turned off. The quadratic integration successfully 
eliminates these oscillations. 
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Fig. 15. Inductor voltage using trapezoidal integration. 

R=1 Ohm 
L=1 mH 
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Fig. 16. Diode voltage using trapezoidal integration. 
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Fig. 17. Inductor voltage using quadratic integration. 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-20

-15

-10

-5

0

5

Time (s)

D
io

de
 V

ol
ta

ge

 
Fig. 18. Diode voltage using quadratic integration. 

V. COMPARISON OF TRAPEZOIDAL AND QUADRATIC 
INTEGRATION METHODS 

As described, the proposed quadratic integration method is 
a one-step implicit Runge-Kutta method based on collocation. 
The trapezoidal integration method can be also viewed as a 

member of this category; however, trapezoidal rule uses two 
collocation points, while the proposed method uses three. 
This provides a great advantage in terms of accuracy. As 
every numerical integration method, the quadratic integration 
directly converts the system of differential equations to a set 
of algebraic equations, at each integration step. The 
formulation of these equations is straightforward and the 
procedure can also be automated. This can facilitate the 
process in more complicated models. However, the number of 
algebraic equations of the quadratic integration scheme is 
double compared to that of the trapezoidal rule, due to the 
additional collocation point. The end-result is increased 
computational effort compared to the trapezoidal method per 
iteration (approximately double when sparsity techniques are 
used). Nonetheless, the improved method accuracy (order 
four, compared to order two of the trapezoidal method) allows 
the use of larger time-steps, so that the total computational 
effort becomes less than that of trapezoidal integration, while 
the accuracy remains significantly higher. The trade-off 
between accuracy and computational speed applies also to 
higher order implicit Runge-Kutta methods. As the number of 
collocation points, and thus the order, increase, the 
computational effort also increases. It appears that the 
quadratic integration method achieves a good balance 
between accuracy and computational speed. 

The proposed method also appears to possess better 
numerical properties and be more accurate when compared to 
linear, multi-step methods commonly used in power system 
transient analysis. The use of such methods is usually 
restricted to order two accurate methods. Detailed comparison 
of the quadratic integration and linear, multi-step methods 
used will be reported in future papers. 

VI. CONCLUSIONS AND FURTHER WORK 
This paper introduced some preliminary concepts on a new 

numerical integration method for power system transient, 
time-domain simulation. The method is order four accurate 
and, therefore, much more precise compared to other 
traditionally used method. Furthermore, the method does not 
suffer from sustained numerical oscillations after 
discontinuities (switching events) as the popular trapezoidal 
integration method. Several simple test cases show that the 
methodology appears to be a good alternative for the 
simulation of power system transients.  

The paper focuses on some basic concepts and some 
introductory work on the issue. The numerical properties of 
the method will be studied more thoroughly and the method 
will also be extensively compared to several other numerical 
methods that are commonly used in power system transient 
analysis. Furthermore, the method will be enhanced with an 
error estimation and control algorithm and therefore with 
variable step-size capabilities. The addition of variable step-
size capabilities can be done in the same straightforward way 
as in any other integration method. Some study on singularity 
detecting codes will be also performed to allow the tracking 
of switching events. These features will allow a better 



 

handling of the switching discontinuities, which was not fully 
addressed in this paper. Finally more test cases including 
more complex systems will be simulated. The theoretical 
study and the additional results will be reported in future 
papers. 
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