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 Abstract—Harmonics have become a relevant topic as the 

number of nonlinear elements and electronic devices connected 
to power systems is increasing constantly. This paper presents a 
methodology for the modeling of single-phase transmission lines 
interfaced with nonlinear loads. It is intended for transient 
analysis and special emphasis is put on the harmonic content of 
the propagating waveforms through the dynamic harmonic 
domain (DHD) technique.  
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I.  INTRODUCTION 
RADITIONALLY, transmission lines are modeled either 
in the frequency domain or in the time domain, a partial 

list of important developments in this area is [1]-[9]. By using 
any of these models one can obtain voltage or current 
traveling waves as functions of time. Nevertheless, one could 
be interested in analyzing the harmonic content of such waves, 
especially when nonlinear loads or electronic devices are 
connected to the lines being analyzed. Moreover, the 
consideration of harmonics in a transmission line/nonlinear 
load system is desirable when assessing ferroresonance 
conditions [10]. 

In this paper we model the transmission line by the 
traveling wave approach combined with the Dynamic 
Harmonic Domain (DHD) technique [11]. The latter consists 
on representing a time-varying quantity by a Fourier series 
whose coefficients are allowed to vary slowly [12], [13]. 

Potential applications of the proposed technique are in the 
areas of power quality studies and of ferroresonance analysis. 
Power quality indices are calculated here to illustrate the 
application of the proposed methodology to the power quality 
area. The link between the HD and ferroresonance analysis 
can be seen in [14] and, since it is beyond the scope of the 
present work, it is relegated to a forthcoming paper.  

Accounting for enough harmonics, the DHD technique 
permits to follow in a step-by-step fashion the voltage/current 
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harmonics behavior with respect to time in a precise manner. 
This way, DHD avoids the well-known errors intrinsically 
involved in traditional techniques such as the Windowed Fast 
Fourier Transform (WFFT). 

Although FFT-based methods are efficient in stationary 
conditions, they loss accuracy under time-varying conditions 
[15]. See [15]-[18] for a detailed analysis of such errors, i.e., 
leakage, picket-fence, etcetera. 

The paper is organized as follows. In section II the basic 
definitions of the DHD technique are presented. Section III 
describes the DHD modeling of transmission lines, of 
nonlinear loads and of their interconnection. Numerical results 
are presented in Section IV. 

II.  DHD BASIC THEORY 

A.  Theory 
Without loss of generality consider the Linear Time 

Periodic (LTP) system for the scalar case 
 

 ubxax pp +=& , (1a) 

 udxcy pp += , (1b) 

 
where subscript p stands for time-periodic; for instance ap is 
defined as  

 tjh
ho

tjh
hp

oo eaaeaa ωω ++++= −
− LL , (2) 

 
with h representing the highest harmonic and ωo the 
fundamental frequency. The state representation (1) is 
expressed in the DHD as 
 

 BUXSAX +−= )(& , (3a) 
 DUCXY += , (3b) 

 
where the variables are now complex vectors with time-
varying coefficients, e.g., 
 

 T
hoh txtxtxX )]()()([ LL−= , (4a) 

 
where T denotes transpose, S is called the operational matrix 
of differentiation defined by [13], [19] 
 

 },,,,0,,,{ oooo jhjjjhdiagS ωωωω KK −−=  (4b) 
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and matrix A (as well as B, C and D) has Toeplitz structure 
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By comparing (1) and (3) one can observe that the LTP 

system has been transformed into a Linear Time Invariant 
(LTI) one through the DHD. Moreover, the steady state of the 
system is easily obtained by setting to zero the derivatives in 
(3), thus yielding 

 BUASX 1)( −−= , (5a) 
 DUCXY += , (5b) 
 
Hence, the evolution of the harmonic content, i.e., with 

respect to time, can be obtained from (3) and the 
corresponding instantaneous values are calculated by 
assembling a Fourier series as in (2). 

 

B.  Illustrative example 
Consider the signal shown in Fig. 1 and given by 
 

)]5/5cos(1.0)10/3cos(3.0)[cos()( πωπωωγ ++++= ttttx ooo ,(6a) 
 
where ωo is the power frequency in rad/s and te 205.01 −−=γ . 
The corresponding harmonic vector (showing only the odd 
harmonics) is 
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From (6b) one can notice that the harmonic coefficients are 

time dependent. This is shown in Fig. 2. 
Additionally, for comparison purposes Fig. 2 presents the 

results yielded by the WFFT. For this example, the original 
signal given by (6a) has 1280 points and a sliding window 
with 128 points (sampling rate of 7.68 kHz) is used. In order 
to diminish the leakage error, each windowed data is 
multiplied by the Hanning window. Notice that the WFFT 
follows closely the exact values of the harmonics given by the 
DHD; the latter lacking the intrinsic errors of the former.  
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Fig. 1. Time-varying signal with harmonics 
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Fig. 2. Harmonic dynamics for time-varying signal 

 

III.  TRANSMISSION LINE-NONLINEAR LOAD IN THE DHD 

A.  Propagation Equations 
Consider the reference directions for the transmission line 

depicted in Fig. 3. The relations between the incident current, 
I ′ , and the reflected current, I ′′ , in the frequency domain are 

 
 nm IHI ′′=′ , (7a) 
 mn IHI ′′=′ , (7b) 
 
where H represents the propagation function [5]. On 
approximating H by rational functions [8] we can express (7b) 
as 
 mn IBAsICI ′′−=′ − ])([ 1

1
11 . (8a) 

 
In (8a) the set of poles (k poles), obtained from the rational 

fitting, are contained in the diagonal matrix A1 of dimensions 
k×k; the column vector B1 (k×1) has all entries equal to 1 and 
the residues of the realization are contained in the row vector 
C1 (1×k). From (8a) we define 

 
 mIBAsIX ′′−= −

1
1

11 )( , (8b) 
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The corresponding state-space realization for (8b) becomes 
 
 miBxAx ′′+= 111& , (8c) 

 
Using a similar procedure for node m, the state space 

realization for (7a) is straightforward to obtain. The state 
space realization for the two line nodes is thus 
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In (9), the reflected currents ni ′′  and mi ′′  are calculated at 

time t–τ, being τ the travel time. In the DHD, (9) becomes 
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Now, in (10) we have the following matrix definitions 

with corresponding dimensions shown inside round 
parenthesis: 

 
 )(},,,{ 211 khkhIaIaIadiagA hkhh ×= L , (11a) 
 )(},,,{' khkhSSSdiagS ×= L , (11b) 

 [ ] )(1 hkhIIIB T
hhh ×= L , (11c) 

 [ ] )(211 khhIcIcIcC hkhh ×= L , (11d) 
 { } )(,,' khkhdiag ×= ΓΓΓ L , (11e) 
 

In (11), Ih corresponds to the identity matrix of dimensions 
h×h and the time delay is taken into account by 

 
 { }τωτωΓ oo jhjh eediag −= LL ,1,, . (11f) 
 

One can observe from (10) that the dimension of the 
dynamic system has been increased h times. Although the 
computational advantages of (10) compared to (9) are 
questionable, the former permits us to follow the dynamics of 
any harmonic along the observation time. 
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Fig. 3.  Transmission line reference directions 

 

B.  Node Equations 
 In addition to the propagation equations, we have in the 

frequency domain the terminals relations (see Fig. 3) 
 

 mmmc IIVY ′=− 2 , (12a) 
 nnnc IIVY ′=− 2 . (12b) 

 
Assuming that the voltage at node m is known, the time 

domain realization for (12a) is (Yc being fitted with rational 
functions) 
 mvBxAx 2323 +=& , (13a) 
 mmm ivDxCi ′−+= 2132 , (13b) 
 
with their corresponding DHD counterpart given by 

 
 mVBXSAX 2323 )'( +−=& , (14a) 
 mmm IVDXCI ′−+= 2132 , (14b) 
 
where A2, B2, C2, and D1 are defined in accordance with (11a)-
(11)e. The reflected current is then updated with 
 
 mmm III +′=′′ . (15) 
 
Similarly, from (12b) for node n we have in the DHD 
 
 nVBXSAX 2424 )'( +−=& , (16a) 
 nnn IVDXCI ′−+= 2142 . (16b) 

 
Considering a nonlinear load in parallel with a resistive load 

connected to node n (as shown in Fig. 4), the terminal voltage 
vn can be eliminated from (16) by application of Kirchhoff 
Currents Law. First, let us assume that the total load current 
(linear and nonlinear) is given in the time domain by 

 
 Rvi n

p
n /−−−= βϕαϕ ; (17a) 

 
with its counterpart in the DHD given by 
 

 RVI n
p

n /−−−= ΦβΦα ; (17b) 
 
where, for the nonlinear load we have assumed a current/flux 
polynomial relation and now in (17b) the power p is related 
with a convolution operation (see Appendix A). 
Then, substitution of (17b) into (16b) gives 
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where )1/( 1RDRk += . Next, substituting (18) into (16a) and 
taking into account the voltage/flux relation in the DHD 
 

 nVS =+ ΦΦ& , (19) 
one obtains the final relations for node n as follows: 
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Finally, after calculating In from (20), the reflected current 

is updated with 
 nnn III +′=′′ . (21) 

 
In the case of a network with several transmission lines, the 

procedure described above could be used [14]. The incident 
currents are calculated for each line using an expression 
similar to (10). The solution for each load node can be 
calculated by using the nodal elimination as in (20). Finally, 
the reflected currents are updated. 

 
Fig. 4.  Nonlinear/linear load 

IV.  EXAMPLE 
 

Consider the network shown in Fig. 5. It consists of three 
transmission lines having a resistive load at bus 2 (Z1) and 
identical linear/nonlinear loads (as specified by (17a) and 
depicted in Fig. 4) that are connected at buses 3 and 4 with R 
= 1 x103 ohms, α =1/10, and β = 5x105. For simplicity, the 
lines are considered identical with 100 km of length, 
conductor radius equal to 0.0254 m, 15 m height, and earth 
resistivity equal to 100 ohm-m. 

Initially, zero initial conditions are assumed with sw1 open, 
sw2 and sw3 closed. Then, at t = 0 sw1 is closed and at t = 
0.023 s sw2 is opened and it remains opened during the whole 
observation time. The results from the DHD are compared 
with those obtained from the direct simulation of the system 
of nonlinear equations in the time domain (labeled as TD in 
Figs. 6-8) using a predictor-corrector type method. 

For this example, we have taken a polynomial of order p = 
3 for (17a) and 17 harmonics, positive and negative, are being 
considered. 

 
Fig. 5.  Network configuration with four buses 
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b) 

Fig. 6.  a) Voltage and its b) harmonic content at bus 2 
 
 Fig. 6 shows the instantaneous voltage and its harmonic 
content for bus 2 where the difference (in the voltage 
waveform) between the simulation of the original ODEs and 
the one from the DHD is almost unnoticeable. One can notice 
from Fig. 6a the transient waveforms when closing sw1 and 
when opening sw2. Accordingly, Fig. 6b shows the harmonics 
behavior during the whole observation time. In Fig. 6b the 
harmonics oscillate with power frequency. The attenuation of 
these oscillations is not noticeable given the very low damping 
of the system under study. If there was a very large damping 
the harmonic plots would become horizontal lines in Fig. 6b. 
This would denote that the steady state was reached very fast. 
 The voltage, load current and the corresponding harmonics 
at bus 4 are shown in Figs. 7 and 8. Similar observations can 
be concluded as in the preceding paragraph. 
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b) 

Fig. 7.  a) Voltage and its b) harmonic content at bus 4 
 
 

 It should be mentioned that although the direct time 
domain (TD) simulation takes much less time than the DHD, 
the harmonic dynamics needs an additional processing 
procedure to be followed, such as using WFFT. 
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b) 

Fig. 8.  a) Load current and its b) harmonic content at bus 4 
 
 In Fig. 9 the active, apparent, and distortion powers for 
bus 4 are presented. We have used the expressions given in 
[13] for this calculations. The remaining of the power quality 
indices can be calculated using those formulae but are not 
shown here. 
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Fig. 9.  a) Active, b) Apparent, and c) distortion powers at bus 4 

V.  CONCLUSIONS 
In this paper a methodology for handling a system 

consisting of transmission lines and nonlinear loads has been 
proposed. The methodology takes aim into the dynamic 
harmonic domain which permits to follow step-by-step the 
harmonic evolution with respect to time. Its validation is made 
here through the original ODEs. Although the proposed 
methodology has been described for single-phase lines, it can 
be extended for the multi-phase case in a straightforward 
manner. The proposed technique is intended for contributing 
in the study of harmonics in transient state. 

 

VI.  APPENDIX A (NONLINEAR LOAD IN THE DHD)  
Consider the time domain representation of a nonlinear 

load given by the flux/current relation )()( ϕfti = . Such 
nonlinear relation can be expressed in general as a polynomial 
of the type [14] 

 pi βϕαϕ += . (22) 
 
In the DHD, we have a relation similar to (22) where i and 

ϕ  now become harmonic vectors as in (4a). The term ϕ p is 
calculated by harmonic convolution (denoted here with the 
symbol ⊗) [13]. For instance,  

 
 ΦΦΦΦ oT=⊗=2 , (23a) 

where: 
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It can easily be shown that 
 

 ΦΦΦΦ 1−=⊗⊗= p
o

p TL . (23c) 
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