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 Abstract-- Employing an admittance representation in form of a 
black box model approximated by rational functions for linear 
power system components or network equivalents to be included 
in electromagnetic transient studies is a well-known method 
which improves the calculation efficiency. All of the methods that 
have been proposed to solve the rational approximation problem, 
have made efforts to overcome the problem of preserving 
passivity of the final model. Passivity is a vital property, since a 
nonpassive model may lead to an unstable transient simulation in 
time domain. The passivity violation regions are detected via a 
purely algebraic approach based on the existence of purely 
imaginary eigenvalues in the Hamiltonian matrix obtained from 
the state-space representation of the reduced-order model. Also a 
fast test method is presented to check passivity without direct 
calculation of eigenvalues of Hamiltonian matrix. Then a post-
processing technique based on Quadratic Programming (QP) for 
passivity enforcement is presented. To increase calculation 
efficiency and faster convergence only one inequality constraint, 
in where eigenvalue of Hamiltonian matrix is in minimum, is 
considered in solving process of QP problem. The mentioned 
minimum point is detected by the bisection method instead 
frequency sweep method and therefore the efficiency of 
computation increases significantly.  
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I.  INTRODUCTION 
pplication of network equivalents for external systems   
in the well-known time domain programs such as EMTPs 

(Electro_Magnetic Transient Programs) has valuable merits in 
saving of the CPU memory and the run time. A large number 
of approaches have been appeared for construction of network 
equivalent which can be categorized into two main groups, 
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time domain equivalent and frequency domain equivalent. The 
solution in frequency domain is essentially aimed on 
identification of rational functions that approximate the 
admittance matrix of external system seen from boundary 
bus(es). Among the various methods of fitting, the Vector 
Fitting (VF) has proved its efficiency and accuracy in the 
different applications [1-6]. Although VF can lead to a stable 
and precise approximation however the model may not be 
passive. A stable, however nonpassive network besides some 
passive networks or loads may lead to an unstable general 
system. Therefore passivity is an important property for a 
model, although its enforcement is a difficult task. In [7], the 
regions of passivity violation are searched by a frequency 
sweep method. The drawbacks of this detection method are:  
      1) The passivity violation regions may be outside of the 
considered frequency spectrum when examined by a 
frequency sweep. On the other hand the method needs a 
frequency sweep from 0 to ∞, to detect the nonpassive 
regions.  Although transients in power systems will never be 
generated with an infinity frequency, the frequency sweep is 
needed to ∞ to guarantee the passivity of the approximated 
equivalent network or component.  
       2) The accurate detection of regions of passivity violation 
depends on the fineness of frequency sweep, where 
undoubtedly the higher fineness is more time-consuming.  
Considering the above drawbacks, [8, 9] proposed a purely 
algebraic method based on the existence the purely imaginary 
eigenvalues of associated Hamiltonian matrices obtained from 
the state-space representation of the reduced-order model. 
This method is used in this paper too.  The use of Hamiltonian 
matrix is also mentioned in [10]. In [8], a compensation 
procedure based on a small perturbation of the Hamiltonian 
matrix is also presented. In [7], a post-processing algorithm 
based on Quadratic Programming (QP) is employed to ensure 
the local passivity. However all frequency points found by 
means frequency sweep in nonpassivie regions are considered 
as constraints in QP algorithm. It causes a large-scale solution 
of QP that decreases the efficiency of calculation. Therefore in 
this paper to increases the efficiency of calculation of QP 
method only one constraint, where the worst passivity 
violation (where the eigenvalue is minimum measure) occurs, 
is selected to enforce the passivity and entered in QP 
algorithm. To detect magnitude of maximum violation in any 
nonpassive region, a frequency sweep method can be used. 
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However by using the frequency sweep, there would be no 
guarantee to detect the maximum violation. This difficulty is 
overcomed by employing a bisection method based on 
Glover-Enns bounds [11, 12]. Also in some cases the network 
equivalent is inherently passive and it doesn’t need any 
enforcement for passivity and it is sufficient just to check the 
passivity. Hence in this paper also a fast test method is 
proposed to check the existence of the purely imaginary 
eigenvalues of associated Hamiltonian matrices (without 
direct calculation of eigenvalues) that enhances the efficiency 
of calculation.  
 

II.  DEFINITION OF PASSIVITY 
       Passivity may be defined in a loose sense as the inability 
of a given structure to generate energy. The linear time-
invariant multiport system can be converted into state-space 
form as follows: 
 
  
                                                                                               (2)  
  
where the dot denotes time differentiation. The number of 
ports and the dynamic order of the function in the 
approximation are p and n respectively. Then the state vector 

ntx ℜ∈)( ,the input and out-put vectors pyx ℜ∈, , 
nnA ×ℜ∈ , pnB ×ℜ∈ , npC ×ℜ∈ and ppD ×ℜ∈ .The poles and 

residues of system are included in the matrices A and C 
respectively. The input-output transfer function matrix of the 
system can be obtained from (2) as follows: 
                                                                                               
                                                                                               (3) 

 
where s is the Laplace operator. The precise definition of 
passivity requires that the transfer matrix under investigation 
be positive real. This condition requires that the Hermitian 
part of the transfer matrix must be nonnegative definite on the 
imaginary axis, i.e., 
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where ∗  denotes complex conjugate transpose.  
 
The condition (4) can be checked by ensuring that all its 
eigenvalues are nonnegative at any frequency 
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The direct application of the definition (5) for testing 
passivity, however, requires a frequency sweep since this 
condition needs to be checked at any frequency. The results of 

such tests, therefore, depend on accurate sampling of 
frequency axis, which is not a trivial task. For this reason, 
purely algebraic passivity tests are high desirable that will be 
described in section III. 
 

III.  CHARACTERIZATION OF PASSIVITY VIOLATIONS 
    Regarding to drawbacks of frequency sweep to detect non-
passive regions, in this section an effective tool for deriving 
the passivity conditions in a purely algebraic form based on 
Hamiltonian matrices associated to the state-space realization 
will be used. Let first recall the definitions of the Hamiltonian 
matrices for the hybrid cases (with emphasis on Y form for 
network equivalent applications) [13],  
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where )2( TDDIQ −−= δ  

δN is a Hamiltonian matrix, meaning  
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where T  denote transpose. δN  matrix depends on a scalar 
parameter,δ , which is related to the spectrum of frequency-
dependent eigenvalues of the Y matrix that is expressed by 
following theorem 1 [13]. 
     Theorem 1. Assume A has no imaginary eigenvalues, δ  is 
not a singular value of 2/)( TDD + , and R∈0ω . Then, δ is an 

eigenvalue of )( ωjG  if and only if )( 0 Ijωδ −N is singular.  
     A passivity test can be readily designed by using the 
critical level 0=δ and hence 
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On the other hand, pure imaginary eigenvalues of matrix N 
correspond to the exact locations where the real part of the 
symmetric admittance matrix becomes singular. The powerful 
merit of above technique based on Hamiltonian matrix is 
being independent of the frequency. This pure algebraic 
method overcomes the mentioned drawbacks of frequency 
sweep method. Although due to the numerical noise, the 
detection of imaginary eigenvalues of matrix N is difficult, 
however employing the special properties of the eigenvalues 
of Hamiltonian matrix N, this problem can be solved, namely 
the eigenvalues of N are symmetrical with respect to the real 
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and imaginary axes. Although based on the properties of the 
eigenvalues as mentioned above the precise locations of 
singular values of )( ωjG are known, however this does not 
contain any information about passivity violation regions. For 
this purpose a method based on the slope of eigenvalues of 

)( ωjG  at its singular locations is employed. The slope of 
eigenvalues of )( ωjG at singular locations can be determined 
by following equation [14].  
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where u and tv are the corresponding right and left eigen-
vector respectively. 
The singular frequencies in a vector [ ]TaS ωωω ,,, 11 K=          
where Tωωω <<< K21  are found. Starting from the highest 
frequency, Tω , and counting the positive and the negative 
slopes in the specified frequencies, then in any frequency 
where the number of positive and negative slopes equates, 
there is an indication of  a local nonpassive region. 
 

IV.  A FAST TEST METHOD TO CHECK PASSIVITY 
    In some cases the network equivalent is inherently passive 
and it doesn’t need any enforcement for passivity and it is 
sufficient just to check the passivity. Hence a fast test method 
to check the existence of the purely imaginary eigenvalues of 
associated Hamiltonian matrices (without direct calculation of 
eigenvalues) enhances the efficiency of calculation.  
Since N is Hamiltonian, the characteristics polynomial of N, in 

)det()( MsIsa −= , is a polynomial of 2s ; )()( 2spsa −= . 
Therefore N has imaginary eigenvalues if and only if p has 
real nonnegative roots. The coefficients of polynomial p could 
be computed from N by the Leverrier-Feddeva algorithm [15]. 
Also a Sturm method can be used to test whether p has real 
nonnegative roots [16]. Consider two polynomials with real 
coefficients as below: 
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The Strum sequence associated with )(xα  and )(xβ  is a set of 

polynomials )}({ xfk ii where ik are arbitrary positive constants 
and:  
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Equations (10) represents Euclid’s algorithm applied to )(xα  

and )(xβ  while the signs of the reminders reversed. A second 
fundamental tool in the qualitative study of polynomial is the 
Cauchy index )(xI b

aγ , where )()()( xxx αβγ = , and it is 
known that:  
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where V(x0) denotes the number of variations in sign of the 
sequence of  f0(x), f1(x), f2(x),…. 
     The algorithm of Routh, presented first by British 
mathematician, E. J. Routh, enables the Strum sequence to be 
constructed without explicitly carrying out the polynomial 
divisions in (10).  
Specifically, the Routh array (rij) is a set of rows as follows: 
 

LLLLL

L

L

L

232221

1131211

1,00030201

rrr
rrrr

rrrrr

m

mm +

                                                    (12) 

 
where: 
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It is assumed that the array is in a regular form, i.e., all 01 ≠ir . 
The problem which was resolved by Routh [17, 18] is to 
determine when a given polynomial with real coefficients as: 
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is the characteristic polynomial of an asymptotically stable 
linear system. This requires that all the zeros of (15) have 
negative real parts. In this case, the required and sufficient 
condition is: 
 

0),,,( 211101 =Krrrv                                                            (16)  
 
In other words, all the first column elements in the Routh 
array generated by (14) should be positive. The Routh 
algorithm can readily be modified to determine the number of 
real zeroes of a real polynomial f(x). The modified Routh 
array )~( ijr is formed starting with the first two rows as: 
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The rows are formed by the coefficients of the polynomials 
)( xf −  and dxxdfxf /)()( −=−′ .   

Computing the modified Routh array )~( ijr , (14), the parameter 
kp, the number of positive real zeros can be computed as 
follows: 

),~,~,~( 211101 Krrrvnk p −=                                                   (18) 

 

V.  PASSIVITY ENFORCEMENT 
    To enforce the passivity in the nonpassive regions detected 
in section III, we follow the Quadratic Programming (QP) 
method proposed in [7] with some modifications to increase 
efficiency calculations.  
    The quadratic programming problem is as following form 
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where H, A, and Aeq are matrices, and f, b, beq, lb, ub, and x are 
vectors. The QP problem can be computed using the 
MATLAB command, quadprog.  
    In [7], all frequency points in a nonpassive region, detected 
using frequency sweep, are used as inequality constraints 
included in QP problem. This causes a large-scale problem 
and decrease efficiency computation. Instead of it, we propose 
only one inequality constraint in the point where the 
eigenvalue of )( ωjG is minimum is considered.  
This decreases the problem to a medium-scale and with a less 
number of iterations QP problem will be solved. To detect the 
mentioned point, instead of frequency scan in nonpassive 
region, an efficient method based on H∞-norm approximation 
is presented. Let first consider the minimum dissipation, 
diss(H), of a transfer matrix defined by: 
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Then consider the following theorem [13].  
 
   Theorem: Let A be stable and )2/)((min

TDD +< λδ . Then 
δ≤)(Hdiss if and only if δN has imaginary eigenvalues. 

       Above theorem suggests a bisection algorithm for 
computation of diss(H).  Let lbγ and ubγ  be the lower and 
upper bounds of diss(H), respectively. In a nonpasssive region 
the upper bound will be zero. For the lower bound, one can 
use modification of Enns and Glover bounds [11, 12] used for 
H∞-norm approximation:  
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where; co LLL =  

oL and cL can be computed by solving the observability and 
controllability Grammian Lyapunov equations as follows: 
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Then a bisection algorithm [13] can be used to detect the 
maximum violation in any nonpassive region.  
 

VI.  COMPUTED RESULTS 
In this section two examples will be presented to 

demonstrate the accuracy and efficiency of passivity check 
and compensation algorithm. 
     Example 1: This is a fourth order rational approximation 
of a single port system to explain more the described 
techniques in this paper. Fig. 1 shows frequency spectrum 
eigenvalues of real part of Y. The Routh array test described 
in section IV and then the calculation of eigenvalues of the 
Hamiltonian matrix of state-space realization identifies a 
nonpassive region, [0.4856, 2.8060] kHz.  
    The lower bound computed by (21) is -0.1191. Then we use 
the bisection algorithm to detect the minimum eigenvalue of 
Real(Y) in the mentioned nonpassive region. The minimum of 
eigenvalues of Real(Y) will be -0.0242 in frequency 1.2028 
kHz. Then we solve QP problem subject to only one 
inequality constraint in the point minimum eigenvalue of 
Real(Y). Table 1 summarizes the residues and constant term 
before and after perturbation by using the proposed QP in this 
paper and [7]. The errors in two cases are 0.2235 and 0.6553 
respectively that shows the more accuracy for our proposed 
method. Also in 1st iteration, the passivity will be enforced at 
all frequency spectrums.                     
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Fig. 1: Frequency spectrum of eigenvalues. 



Fig. 2 and 3 show frequency spectrum of the eigenvalues 
before (blue line) and after (red line) application of the 
perturbation; through employing the proposed QP method, 
versus employing the method in [7] respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Frequency spectrum of the eigenvalues before and after application  
of the perturbation; through employing the proposed QP method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Frequency spectrum of the eigenvalues before and after application  
of the perturbation; through employing the method in [7]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Frequency spectrum of the imaginary eigenvalues before and           
after application of the perturbation; through employing the proposed QP 
method. 

Also the imaginary part of Y without and with passivity 
enforcement is shown in Fig. 4 that demonstare the accuracy 
oh the proposed method. Table 1 shows the residues and the 
constant term before and after application of the perturbation; 
through employing the proposed QP method, versus 
employing the method in [7]. 

 
 

Table 1. The residues and constant term before and after application of the 
perturbation; through employing the proposed QP method, versus employing 
the method in [7]. 

 
 
 

 
Example 3: In this example the proposed method is 

examined on a sample distribution network where the 
passivity enforcement of terminal admittance matrix of this 
system is looked for.  The information of this network is 
provided by [19]. The distribution system has two 3-phase 
buses as terminals (A, B) shown in Fig. 5. The 6×6 admittance 
matrix Y is calculated for this system in a frequency range of 
10 Hz–100 kHz. To increase the calculation efficiency all the 
elements of Y are fitted with a common pole set. To fit 50 
complex pair poles are selected as initial poles.     

 

  
 

Fig. 5: Power system distribution system 
 
Figs. 5 & 6 show fitting the magnitude and phase angle of 

6×6 admittance matrix Y through an improved version of VF 
named vfit2 [19]. Fig. 7(a) shows the frequency spectrum of 
the six eigenvalues of the admittance matrix. As shown in Fig. 
7(a), the passivity violations occur in frequencies of about 
3kHz.   
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Fig. 5: Fitting of the magnitude by VF 
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Fig. 6: Fitting of the phase angle by VF 
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Fig. 7(a): Frequency spectrum of eigenvalues 

 
 

Fig. 7(b) shows an expanded view of the nonpassive 
region; [29.237, 29.736] kHz, obtained by Hamiltonian matrix 

theory. The magnitude of maximum passivity violation in this 
region is -8.9149e-5 at a frequency of 29.579 kHz. After 1st 
iteration of perturbation, the above nonpassive region is 
mitigated to [29.408 29.592] kHz and the magnitude of 
maximum passivity violation also is mitigated. Although both 
the bound of passivity violation and the magnitude of 
maximum passivity violation (the severity of passivity 
violation) in above nonpassive region are mitigated, the new 
nonpassive region; [30.080, 30.248] kHz, is produced after the 
first perturbation. For passivity enforcement only three 
iterations is sufficient. Since the detection and the 
compensation processes of the proposed method aren’t time-
consuming, the iterations can be done fast. Table 2 and Fig. 
7(b) summarize the passivity violations in the process of 
proposed method based on the number of the iterations. The 
RMS error of the proposed method is 1.4229e-8 that 
demonstrate the accuracy of the proposed method. 

 
 

Table 2: the details of calculation of proposed method 
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VIII.  CONCLUSIONS 
     In this paper an efficient and fast method for passivity 
enforcement of a subsystem, through approximation by 
rational functions is presented. The Hamiltonian matrix 
theory, which is a purely algebraic method, is employed to 
find the passivity violation regions. This method isn’t 
dependent on the frequency and hence it overcomes the 
drawbacks of frequency sweep method. The minimum 
eigenvalue in any nonpassive region is identified by using a 
bisection method. In the compensation stage, a QP problem 
with only one inequality constraint is solved. This provides 
higher computation efficiency, and a faster convergence.  
Routh array test is employed to check the passivity without 
direct calculation of eigenvalues of Hamiltonian matrix of 
state-space realization.

The freq. of max. 
violation [kHz] 

The mag. of 
max. violation  

Passivity violation 
regions[kHz] 

Number 
of iter. 

29.579 -8.9149e-5 [29.237, 29.736] Original  
30.153 -7.9410e-5 [29.408, 29.592] 

[30.080, 30.248] 
1st iter. 

29.521 -5.9406e-6 [29.444, 29.582] 
[30.138, 30.182] 

2nd iter. 
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Fig. 7(b): Mitigation of violations during iterations 
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