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    Abstract--While time domain electromagnetic transient 
simulation is an incredibly powerful tool for the analysis of large 
signal events in power systems, many small-signal phenomena 
may alternatively be studied using eigenvalue analysis and/or 
transfer functions. Eigenvalue or transfer function based analysis 
requires system linearization to be carried out about a static 
operating point. In the case of power systems, where voltage and 
current signals are AC, linearization is made possible through use 
of the synchronous or dq reference frame transformation. Since 
machine models and models of most FACTS devices and their 
controllers are readily available in the dq-frame, the process of 
linearizing such equipment is relatively straight-forward. 
    Recently, resonant controllers have emerged as an alternative 
to dq-frame controllers for regulation of grid connected 
converters, both in FACTS devices and in interface converters for 
distributed resources. Although these control systems behave 
somewhat similar to dq-frame controllers under balanced 
operating conditions, their behaviour under unbalanced 
operation is unique.  
    This paper develops a small signal model of a VSC system, 
where resonant current controllers are used for regulation of the 
grid currents. Dynamics of a DC voltage control loop are 
included.  Small signal dynamics are validated against time 

domain simulation. 
 
    Keywords: resonant control, FACTS, HVDC, active rectifier, 
eigenvalues, small signal analysis, converters, VSC.  

I.  INTRODUCTION 

HEN attempting to regulate grid connected AC to DC 
converters, such as FACTS devices, dq-frame 

controllers are a standard approach [1]. Under balanced grid 
voltage operating conditions the dq-frame control strategy is a 
simple and effective solution.  Recently, -frame resonant 
controllers have emerged to serve in the place of dq-frame 
controllers [2], [3].  The primary difference between dq-frame 
and -frame controllers is that the -frame resonant 
controllers are able to track both balanced and unbalanced 
current reference commands [4]. However, one drawback of 
the -frame current control is the appearance of time-
invariant modulation blocks in its control loop. With the 
appearance of such time-invariant terms, control design and 
parameterization techniques such as eigenvalue analysis 
cannot be performed.  Similar linearization techniques of a 
time-invariant system for VSC based HVDC transmission                      
This work was funded by the Natural Science and Engineering Research 
Council of Canada 
P.W.  Lehn and S. Podrucky are with the Department of Electrical and 
Computer Engineering, University of Toronto, Toronto, Ontario, Canada, M5S 
3G4 (e-mail: lehn@ecf.utoronto.ca, stephen.podrucky@utoronto.ca) 
 
Paper submitted to the International Conference on Power Systems 
Transients (IPST2009) in Kyoto, Japan June 3-6, 2009  

control is utilized in [5].   
    This paper will develop a linearization technique applicable 
to VSCs with -frame controllers, thus making small signal 
system modeling possible. Validation of the new system model 
is carried out by comparing the linearized small signal model 
with large signal simulation results obtained from 
MATLAB/SIMULINK. 

II.  TYPICAL VSC CONTROL STRUCTURE 

    The electrical diagram of a VSC based AC to DC controller 

is shown in Fig. 1.  The discussion of this paper is with respect 
to this 3-phase AC to DC converter, which may be used as a 

building block to develop more elaborate FACTS controllers, 

VSC based HVDC systems or as part of an electrical drive 
system.  
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Fig.1. Single line diagram for series voltage sourced converter 
 

    Based on time-averaging assumptions, Fig. 2 provides a 

large-signal -frame model of the converter dynamics, useful 

for computationally efficient time-domain simulation. The 
inner -frame current control loop, given in Fig.4, contains a 

resonant controller for both the  and -axis currents. Under 
unbalanced operating conditions, this controller can (i) reject 

unbalanced grid voltage distortions and (ii) track unbalanced 

current references, if desired. This eliminates not only the need 
for separate controllers for positive and negative sequence 

components, but also eliminates the filtering required to 

separate the positive from negative sequence components, as 
discussed in [4].   

    Only two blocks in the diagram of Fig. 2 are not linear time-
invariant. One of these blocks appears after the DC voltage 

controller. It is a modulator used to create the required -

frame current references. The other is the AC to DC power 
conversion equation, which relates the converter’s dc-side 

voltage and current to its ac-side voltage and current in the -
frame. Embedded in this power equation is a demodulation 

function. 

    In Fig.3, the demodulating function and the power equation 
have been separated. The extraction of the demodulating 

element transfers the -frame power conversion equation into 

the dq-frame.  Neither the demodulation function, nor the 
power equation are linear time-invariant.   
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              Fig. 2.  Block diagram of DC voltage control model with  frame current control
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                Fig. 3.  Block diagram of DC voltage control model with  frame current control modified
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Fig. 4.  Inner AC current loop of Fig.2  
 

    To allow use of linear analysis (e.g. eigenvalue analysis) and 
control design techniques (e.g. root locus, bode plot or linear 

state space control techniques) the structure of Fig. 2 must be 

linearized.  This is achieved by manipulation of the equivalent 
system shown in Fig. 3.  The process, will create a dq-frame 

equivalent of the -frame current controller.  Unlike the 
original -frame model the dq-frame equivalent will: 

(i) contain only time-invariant blocks 

(ii) be linearizable about a nominal operating point. 

III.  DQ-FRAME EQUIVALENT OF LPHA BETA-FRAME 

RESONANT CURRENT CONTROLLER 

    Utilizing the block diagram based reference frame 

transformation approach of [6], the ejt term can be moved 
through the  current controller. The transformation approach 

is depicted in Fig. 5, where the transfer function parameter τ 
may, in general, be complex. 
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    By performing this shift through a transfer function, each 

pole and zero of the transfer function is shifted by j0. The 
resulting shifts in each -frame transfer function can be 

viewed in Table I. These results are in agreement with those of 

Zmood, Holmes, and Bode [7].  
 

TABLE I 
TRANSFORMATION OF ALPHA-BETA FRAME CURRENT 

CONTROLLER 

 Frame 
Transfer 
Function 

Equivalent dq-frame Transfer Function 

ipK  ipK  
2 2iR

s
K

s ω
⋅

+
 

2 2

2 2 2 2

Re Im

( )

( 2 )

( 2 )

( 4 ) 4

( ) ( )

iR

iR

s j
K

s s j

s
K j

s s s

C s j C s

ω

ω

ω ω

ω ω

+
⋅

+

 +
= ⋅ − ⋅ + + 
= − ⋅

 
 
 Using results from Table I, the block diagram of Fig. 6 may 

be constructed using the relations:  
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where Kip is the proportional current control gain, Kir is the 

resonant current control gain, d is the error of the d-axis 

current control, q is the error of the q-axis current control. 
 

    From the dq-frame equivalent block diagram of Fig.6, one 
can note a change in structure. While the grid voltage and the 

AC plant dynamics are simply replaced by their dq-frame 

equivalents, the current controller contains cross coupling 
transfer functions between the d and q-axes. 

IV.  SMALL SIGNAL MODELING AND LINEARIZATION ABOUT 

BALANCED SOURCE OPERATING POINT 

    Having shifted the e jω t modulator rightwards through the 
current loop allows the modulator/demodulator functions to be 
cancelled. As can be observed in Fig. 6 the resulting current 
loop is now in the dq-frame.  Combining the DC voltage 
control loop of Fig. 3 with the current control loop of Fig. 6 
yields a complete, large-signal, dq-frame model, as shown in 
Fig. 7. Fig. 2 and Fig. 7 are therefore equivalent and may be 
interchangeably used for large-signal simulation (based on 
time averaging assumptions).  
    The only non-linearity in Fig. 7 resides in the AC to DC 
power conversion equation.  This function can be easily 
linearized using small-signal conversion of a non-linear 
system.  Similar techniques are utilized in DC to DC 
converters, [9].  A Taylor series was applied to the non-linear 
power equation (3) to obtain our linear model (4). The time 
varying small signal variables in (4) are denoted with an 
inflection above them. Capital variables stand for the steady 
state operating point values of the given system. 
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where vtd is the d-axis VSC AC side terminal voltage, vtq is the 
q-axis VSC AC side terminal voltage, id is the d-axis AC line 

current, iq is the q-axis AC line current, vdc is the DC link 
voltage of the VSC, and idc is the current from the VSC into 

the DC link. 

    Now that each element of this dq-frame equivalent to the  
current controller is linear, controller design techniques and 

linear analysis techniques, including eigenvalue analysis and 

system parameterization, can be performed.  For these 
techniques to be easily implemented the state space 

representation of the closed loop system was developed and 
can be viewed in the Appendix. The small signal state space 

representation in the Appendix takes on the form of (5) and 

(6).
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Where x  is the vector of small signal system variables, u  the 

system inputs and y   the system outputs. 

    With respect to (7), the first state variable is related to the 

DC voltage controller.  The following two groups of three are 

linearly independent states that represent the states of the d and 
q axis current controllers.  The next three states are the 

system’s output states.  With the linearized state space 
representation, a time domain simulation can be easily 

performed and the small signal model of the control system 

can be validated. 

V.  MODEL VALIDATION VIA TIME DOMAIN SIMULATIONS 

    The performance of the small signal model for the DC 
voltage controller was tested against time domain simulation 

using MATLAB/SIMULINK. The response of the two system 
models were compared by viewing the DC link voltage, the d-

axis AC line current, and the q-axis AC line current with 

respect to two input step changes:  
(i) a +2A (0.17p.u.) step in DC load current  

(ii) a +25V (0.067p.u.) step in the DC voltage reference.  
The system parameters and steady state operating point 

values can be viewed in Table II below.  Parameters for a low 

power 4.5 kVA VSC are used to allow future laboratory 
validation. 

TABLE II 
PARAMETERS USED IN SIMULATION 

System Parameters Variable/Symbol Value 

Grid voltage Vg 208 Vll 

   

Converter Parameters Variable/Symbol Value 

AC interface inductance L 2.5 mH 

AC interface resistance R 0.52  

DC link capacitor C 70 F 

   

Converter Ratings   

kVA rating Sbase 4.5 kVA 

AC voltage rating  Vbase 120 Vln 

AC current rating Ibase 12.5 A 

DC voltage rating Vdc_rated 375 V 

   

Steady State Operating 

Conditions 

Variable/Symbol Value 

D-axis grid voltage Vgd 169.7 V 

Q-axis grid voltage Vgq 0 V 

D-axis terminal voltage Vtd 161.66 V 

Q-axis terminal voltage Vtq -14.57 V 

D-axis AC line current Id 15.46 A 

Q-axis AC line current Iq 0 A 

DC link current Idc 10 A 

DC link voltage Vdc 375 V 
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                                                  Fig.6.  Dq-frame equivalent of -frame current loop of Fig.4 
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                  Fig. 7.  Dq-frame block diagram equivalent of Fig. 2. 

 

A.  DC Load Current Step Response 

    The converter is first operated as an active rectifier and a  
step change in DC load current is introduced to the system. At 
time 1 second the DC load current is increased from 10 A to 12 
A. The responses of large and small signal systems are 
compared in Fig 8. 

 
Fig. 8  Responses to DC load step change   

 
    From viewing Fig. 8 one can note very little deviation 
between the large and small signal system responses as a result 
of a DC load step. 
 

B.  DC Link Voltage Reference Step Response 

    A change in DC link voltage reference is made to the 

simulated systems at time 1 second, with the DC voltage 
reference being increased from 375 to 400 V. The responses of 
the large and small signal systems are given in Fig. 9. 
    From viewing Fig. 9, one can again note very little deviation 
between the large and small signal system responses. The 
simulation results of Fig. 8 and 9 validate the accuracy of the 
developed small signal model.  

 
Fig. 9  Responses to DC voltage reference step change 

VI.  APPLICATIONS 

    Small signal converter models have many applications 
ranging from stability analysis to control design. In power 
systems, one application is to employ the small signal model to 
investigate the system dynamics after a fault event. In contrast 
to large signal simulation models, a small signal model allows 
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the dynamics to be related back to system and control 
parameter values.   
    In contrast, developers of electric drives, VSC based HVDC 
systems or wind turbine systems with back-to-back converter 
interface, designers may instead be interested in the DC-side 
input/output impedance of a converter, as this impedance may 
be used for investigating DC side interactions.  
    Two applications will be presented. The first investigates the 
small signal dynamics of a VSC interfaced energy source, 
where the AC grid is subjected to a distant line-line fault or 
distant 3-phase fault. The second application investigates the 
DC-side output impedance of the VSC when it is operated as a 
unity power factor active rectifier.  

 

A.  Converter Dynamics due to Distant Grid Faults 

    Two types of distant grid faults will be considered, namely a 
3-phase fault and a line-line fault. Grid voltages before, during 
and after the fault are summarized in the table below.

 Fig. 10  Small signal converter response to a distant 3-phase fault.                     
 

TABLE III 
LOCAL GRID VOLTAGE VARIATION DUE TO FAULT 

 Va Phasor Vb Phasor Vc Phasor 

Balance Fault    

Pre-fault    
Fault 96 96 96 

Post-fault    
Unbalanced Fault    

Pre-fault    
Fault  105.4 105.4 

Post-fault    
 

    The response to a balanced distant fault is shown in Fig.  10.  
During the 3-phase fault a significant dip in grid voltage 
introduces some inaccuracy in the linearized model behavior.  
However, when the fault is cleared the recovery dynamics of 
the linearized system are highly accurate.  The response to a 
line-line distant fault is shown in Fig.  11.  Three traces are 
shown in Fig. 11; the linearized system behavior of the VSC 
with resonant control, the large signal behavior of the VSC 
with resonant control and the large signal behavior of a 
classical dq-frame controller.  We can make three key 
observations: 

1. Despite -frame and dq-frame controllers being used 
almost interchangeably in the literature, a large 
difference exists in their response to unbalanced 
events. 

2. Despite the ability of the resonant current control loop 
to reject any grid voltage imbalance, unbalanced 
currents still flow in the system, due to control action 
of the DC voltage regulator. 

3. The linearized model accurately captures the 
dynamics associated with the unbalanced fault. 

 

B.  Converter DC-Side Output Impedance when 
Operated as a Unity Power Factor Active Rectifier 

    When inter-connecting multiple converters, as is done in 
back-to-back HVDC systems, electric drives and cascaded 
power supply systems, the circle criterion is sometimes  used 
to determine stability of the inter-connected system, [10]. 

 
Fig. 11  Converter response to a distant line-line fault. 

 
Application of the circle criterion requires the output (or input) 
impedance of each converter to be known. When operating as 
a unity power factor active rectifier, the transfer function from 
iload to vdc (see Fig.1) gives the dc-side output impedance of the 
converter. This may be found from the linearized model from: 
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with sub-matrices given in the appendix, 

Cm= [ 0 0 0 0 0 0 0 0 0 1], and Bm = [0 0 0 0 0 0 0 0 0 -1/C]T. 
 
Fig. 12 and Fig. 13 show the magnitude and angle of the DC-
side output impedance. Using successive time domain 
simulations, the small signal impedance is verified at five 
discrete frequencies, as shown by the ‘x’ markers in Fig. 12.  
The linearized results again show excellent accuracy up to 
several hundred hertz. 
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VII.  CONCLUSIONS 

    A complete small signal model of the VSC with αβ-frame 

control is developed and validated. Since linearization of the 
system must be carried out around a sinusoidal operating point, 

the αβ-frame control and system models must be first 
converted into equivalent dq-frame control and system models. 

The conversion is carried out using a simple block diagram 
manipulation approach. The resulting dq-frame model is 

finally linearized. The resulting state space matrix equations is 
developed parametrically so that users may explore the effects 

of controller gains, parameter values and operating point on 

the system dynamics. 
    The developed model has been validated against time 

domain simulation results. Two applications of the model, one 
to power system dynamics and the other to motor drive/HVDC 

system stability analysis give brief examples of how the model 

might be used. 

 
Fig. 12  Magnitude  and phase of output DC impedance 
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