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 ABSTRACT—This paper presents an efficient feature extraction 

method based on discrete wavelet transform for the classification 

of the power quality disturbances. Firstly, the decomposition 

coefficients are obtained by applying 10-level wavelet multi 

resolution analysis to the signals (normal, sag, swell, outage, 

harmonic, sag with harmonic and swell with harmonic) generated 

by using the parametric equations. Secondly, a combined feature 

vector is obtained from standard deviation of these features after 

distinctive features for each signal are extracted by applying the 

energy, the Shannon entropy and the log-energy entropy methods 

to decomposition coefficients. Finally, the support vector machine 

(SVM) classifier is used for classification performance of 

proposed feature extraction method. The regularization 

parameter and kernel parameter of the SVM are determined by 

10-fold cross validation. Simulation results indicate that the 

combined feature vector has more high classification accuracy 

with regard to the other feature vectors. 
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wavelet transform, features extraction. 

I.  INTRODUCTION 

OWER quality (PQ) disturbances occur following events, 

such as line energizing, reactor and capacitor switching, 

faults, lightning, large load switching, etc., in the power 

systems. These disturbances are a serious problem for power 

system equipments and customers used especially sensitive 

electronic loads. If the sources, effects, causes and types of 

such disturbances are determined using a suitable monitoring 

system, an effectively solution can be performed for mitigation 

actions. In order to achieve this, monitoring equipments must 

have functions which involve detection, localization and 

classification of transient events and should be installed at 

suitable locations of the power system [1]. Monitoring PQ 

disturbances are carried out most often by the short time 

discrete Fourier transform (STFT). The STFT does not 

recognize the signal dynamics because of the limitation of a 

fixed window width. On the other hand, the wavelet transform 

(WT) having some advantages according to the STFT provides 

a better framework for power quality monitoring. 

The WT technique is a very efficiently tool for detection 
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and classification of short-time non-stationary signals thanks to 

its time-frequency multiresolution analysis (MRA) property. In 

[2], the WT-MRA technique to detect and localize different 

PQ disturbances is used. In [3], the continuous WT (CWT) to 

estimate the disturbance time duration and the discrete WT 

(DWT) to estimate the disturbance amplitude are proposed. In 

[4], the wavelet probabilistic network algorithm which is 

combined the properties of the WT and the probabilistic neural 

network (PNN) to detect disturbances is presented. There are 

several studies [5]-[10] where firstly, the WT is used for 

extracting distinctive features of PQ disturbances and then, 

classification of disturbances performs using the artificial 

intelligent techniques. As seen in these studies, the nearest 

neighbor pattern recognition technique [5], the fuzzy expert 

system [6], the artificial neural networks (ANNs) [7], the 

adaptive neuro-fuzzy inference system [8], the self-organizing 

mapping neural network [9], the self organizing learning array 

and the support vector machine (SVM) [10] have been used 

for classifying PQ disturbances.  

In the classification system of disturbances, the feature 

extraction stage is very important to have high classification 

accuracy, reduce of the feature vector dimension and have less 

computing time at both the training and testing processes of 

classifier. In [11], the feature vector is created using rms 

values and total harmonic distortion values of disturbances. In 

[10], it is calculated the energy at each the WT decomposition 

level. In [12], a wavelet norm entropy-based feature extraction 

method is presented. In [13], the disturbance common features 

such as total harmonic distortion, number of peaks of the 

wavelet coefficients, energy of the wavelet coefficients, lower 

harmonic distortion, are gained using the Fourier transform 

and the WT. In [14], the relevant features are extracted from 

the S-transform that can be derived from the CWT choosing a 

specific mother wavelet and multiplying a phase correction 

factor. 

This paper presents an efficient feature extraction approach 

for the classification of PQ disturbances using the SVM and 

the DWT. In this approach, distinctive features for each 

disturbance signal are extracted by WT-MRA and several 

feature extraction methods. Then, a combined feature vector is 

obtained from standard deviation of features belonging to 

these methods. Finally, classification results for each feature 

vector are obtained by using the SVM classifier. 

The rest of this paper is organized as follows. The proposed 

algorithm is detailed in Section II. In Section III, the feature 

extraction stage of proposed disturbance recognition algorithm 

is presented. A short review to SVM classifiers and parameter 

selection are given in Section IV. Simulations and results are 

given in Section V and Section VI concludes this paper. 
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Fig. 1.  The block diagram of proposed disturbance recognition algorithm. 

II.  PROPOSED ALGORITHM 

The proposed algorithm involves two stages: feature 

extraction and classification (Fig. 1). 

The first stage of disturbance recognition is to extract the 

distinctive features from disturbance signals. The feature 

extraction is carried out through the WT-MRA technique. The 

decomposition and approximation coefficients are obtained by 

applying 10-level MRA to the signals. Distinctive features for 

each both testing signal and training signal are extracted by 

applying the energy, the Shannon entropy and the log-energy 

entropy methods to detail coefficients belonging to each level 

and 10
th

 final level approximation coefficients. Additionally, a 

combined feature vector is obtained from standard deviation of 

features belonging to these three methods. 

In the classification stage, disturbance types are determined 

by using the SVM classifier. The SVM classifier parameters 

are firstly selected by 10-fold cross-validation. By scanning 

the chosen parameter range, the parameters resulting in the 

lowest classification error are determined. Secondly, the SVM 

classifier is trained according to these parameters. Then, the 

feature vector obtained from the feature extraction stage is 

applied to the SVM input. 

III.  THE FEATURE EXTRACTION STAGE  

In the pattern classification problems, the dimensionality of 

the pattern representation at the network input is desired to 

keep small as possible to obtain higher classification accuracy 

and lower computational load and time [15]. Therefore the 

feature extraction process comes into prominence for a 

classification system. 

 

A.  The Wavelet Transform 

The WT technique is a powerful tool to capture the time of 

transient occurrence and extract frequency features of 

disturbances. 

The CWT of a continuous time signal x(t) is defined as, 
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where (t) is the mother wavelet, and asterisk denotes a 

complex conjugate. a and b are scaling and translating 

parameters, respectively. The DWT is discrete counterpart of 

the CWT. In practical applications, the DWT of the sampled 

signal x(k) is replaced by the CWT of x(t) such that 
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m and n are scaling and sampling numbers, respectively. m 

indicates frequency localization and n indicates time 

localization. Generally, scaling and translating parameters can 

be chosen as a0 = 2 and b0 =1. This choice provides a dyadic-

orthonormal WT and the basis for the MRA.   

The MRA decomposes the original signal into several other 

signals with different levels of resolution by means of high-

pass filters (HP) and low-pass filters (LP) [16]. The 

approximation and detail coefficients are given as 
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Thus, the signal is mapped by the following set of 

coefficients 
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B.  The Feature Extraction 

The detail coefficients or approximation coefficients are not 

directly used as the classifier inputs. In order to reduce the 

feature dimension, the feature extraction methods are generally 

implemented to these coefficients at each decomposition level. 

In this study, the methods of the energy, the Shannon entropy 

and the log-energy entropy are used as the features extractors. 

All methods are individually applied to the detail coefficients 

of each level and the approximation coefficients at 10
th

 level 

and the features are extracted. 

 The energy at each decomposition level is calculated using 

following equations: 
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where i is the wavelet decomposition level from level 1 to 

level ℓ. N is number of the coefficients of detail or 

approximate at each decomposition level. In this way, for a ℓ 

level wavelet decomposition, a (ℓ+1) dimensional feature 

vector is constructed. For both each level detail coefficients 

and final level approximation coefficients, the Shannon 

entropy is given as 
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The log-energy entropy is calculated using following 

equations.  
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In this study, a combined feature vector which represents 

these three feature extraction methods is applied to classifier 

input as shown in Fig. 2. As seen in the simulation results, the 

combined feature vector has a high accuracy rate. The Fig. 3 

illustrates the variations in the combined feature vector for six 

classes of disturbances used for training and analyzed with the 

Daubechie’s 4 (db4) wavelet filter for 10-levels. These 

variations are obtained by subtracting normal signal from 

disturbance signals. By means of this figure, it can be said that 

the distinctive feature levels for sag, swell and harmonic are 

level 7 and 8, level 7 and 8, and level from 1 to 5, respectively.  

IV.  THE CLASSIFICATION STAGE 

For automatic classification of PQ disturbances, the WT is 

integrated with the artificial intelligent methods or the expert 

systems. The ANNs have a great using area for classification 

of the disturbances thanks to their high noise tolerance, their 

inherent pattern recognition capabilities and their ability to 

recognize nonlinear functions. However, ANNs have several 

important disadvantages such as determining a proper 

architecture problem, local optimum problem, bad 

convergence property, over-fit or under-fit problem, et al. On 

the other hand, the SVM classifiers have been receiving a big 

interesting of power systems researchers because of producing 

single, optimum and automatic sparse solution by minimizing 

both generalization and training error and separating data by 

the large margin at high dimensional space [17, 18 ]. 

A.  The Support Vector Machines 

The SVM is a powerful tool for solving pattern 

classification problems [18, 19]. Given the training data 

}1,1{,),,(),...,,( 11  i
M yRyxyx x  for a two-class 

problem, the SVM constructs the decision functions of form 

))sgn(( 0wi
T xw  by the maximum margin, where w is the 

normal vector of the separating hyperplane in the canonical 

form and wo is a bias term [18]. The distances of the point 

closest to the hyperplanes of both -1 and +1 are calculated 

as | || |1 w . The separating margin is defined to be | || |2 w . 

In many practical cases in which data is corrupted by noise, 
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Fig. 3.  Variations in the combined feature vector for different disturbance signals. 
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Fig. 2.  The block diagram of the combined feature extraction method. 

 



the data may not be separable by a linear hyperplane. To allow 

to deviations from margin, the slack variables ξi≥0 are 

introduced, 
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For the training data xi, if 0< ξi <1, the data do not have the 

maximum margin but are still correctly classified. If ξi ≥1, the 

data are misclassified by the optimal hyperplane. Thus the 

separation margin is increased by leaving intramargin the noise 

points occurring to near the boundaries or outlier points or 

both, so that generalization performance is improved.  

By accordingly, the SVM constructs the constraint primal 

quadratic optimization problem that minimizes the training and 

generalization error by 
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where C is the regularization parameter which controls the 

penalty incurred by each misclassified point in the training set. 

Generally, larger C values generate SVM models with smaller 

margin and better training accuracy as relatively smaller C 

values produce larger margin and better generalization 

accuracy. 

To solve the primal problem in (15), Lagrange function is 

firstly formulated [20]. Then its derivatives with respect to the 

primal variables w, ξ and wo are calculated and KKT 

conditions are satisfied. Finally the obtained dual optimization 

problem is solved, 
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where αi is nonnegative Lagrange multipliers.  

The SVM maps the inputs x into some higher dimensional 

space by means of a nonlinear feature mapping φ(x) for 

solving the classification problem separated by only highly 

complex decision boundaries in the input space. Thus the 

problem changes into linearly separable case at the feature 

space. If only scalar product j
T
i xx  in (17) is replaced by the 

kernel function )()(),( ji
T

jiK xxxx  assumed to be 

symmetric and positive definite [18], the dual problem subject 

to constraints in (18) is rewritten as 
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where σ  is the width parameter of Gaussian function. 

The decision surface of the SVM is obtained by using only 

the training data xi with αi≠0 lying closest to the decision 

boundary called as support vector,  
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where threshold can be obtained averaging over unbounded 

named support vectors with 0<αi<C. 
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where U is the set of unbounded support vector indices. 

B.  The Parameter Selection 

An important problem in the SVM training is to select the 

parameter C and the kernel parameters. This is known as 

model selection. Kernel parameters are referred to as hyper 

parameters. Choosing hyper parameters involves minimizing 

an estimate of generalization error or some related 

performance measures. In this paper, the parameter C and the 

kernel parameter are selected by using k-fold cross-validation. 

In k-fold cross validation, training data is randomly split into k 

mutually exclusive subsets or folds of approximately equal 

size. The SVM decision function is obtained using k-1 of the 

subsets and tested on the subset left out. This is repeated k 

times. Averaging over the k trials gives estimate of the 

expected generalization error. 

V.  SIMULATIONS AND RESULTS 

A.  Disturbance Signal Generation Using Parametric 

Equations 

The recognition problem of the PQ disturbances was 

considered as the classification problem with seven classes 

consisting of normal signal and the disturbance signals called 

as sag, swell, outage, harmonics, sag with harmonic and swell 

with harmonic given in Table 1. The simulation data was 
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Fig. 4. Power system disturbances. 



generated using MATLAB and the parametric equations in 

[10, 17, 21]. The advantage of using parametric equations is 

that a better generalization performance can be obtained by 

collecting a few different signals belonging to same class. 

Two hundred disturbance signals of each class were 

randomly generated for training and testing at interval of their 

control parameters. These signals were sampled at 256 

points/cycle and generated for a total of 4096 points which 

contain the disturbances. This sampling rate can detect up to 

6.4 kHz for power frequency equal to 50 Hz. A set of sample 

voltage waveforms given in Fig. 4 demonstrates the 

characteristics of the PQ disturbances. 

B.  Simulation Results 

The LIBSVM which is an efficient tool for the SVM related 

training was used to evaluate the classification performance of 

extracted feature vectors for PQ disturbance signals [22]. The 

RBF kernel was chosen, because it can be like a linear kernel 

or a sigmoid kernel under different parameter settings. The 

values of parameter C and RBF kernel parameter were 

determined by using a 10-fold cross validation process for 

obtaining minimum classification error. The db4 wavelets 

were used as the wavelet function and disturbance signals were 

analyzed with a 10-level WT-MRA. All feature extraction 

methods, the energy, the Shannon entropy and the log-energy, 

were individually applied to the detail coefficients of each 

level and the approximation coefficients at 10
th

 level and the 

features were firstly extracted. Then, the obtained features by 

using each feature extractor were asunder scaled to be having 

the same mean and standard deviation. 

Table II-IV gives the simulation result for seven-class PQ 

disturbance problem based on the energy feature vector, the 

Shannon entropy vector and the log-energy entropy feature 

vector, respectively. In these tables, the correct classification 

results are tabulated at diagonal elements. The 

misclassification results are tabulated at non-diagonal 

elements, respectively. As it can see here, average 

misclassification rates of sag and outage classes in these tables 

are 11.25, 15.75, and 7, respectively. Due to magnitude 

sag>10% and magnitude outage<10%, these rates are very bad 

with respect to rates of other classes. By means of these tables, 

it can be said that the log-energy technique has the best 

accuracy with respect to others. 

Table V shows classification results for proposed approach. 

The misclassification problem of sag and outage classes is 

removed by this approach. Besides, other classes are classified 

as completely correct. These results indicate that the combined 

feature vector approach has more high classification accuracy 

with regard to the other feature vectors. 

C.  Discussion 

Taking into consideration the given results in Table V, the 

accuracy of the proposed feature extraction method can be 

evaluated comparatively with the obtained results by using the 

WT and only energy technique in [10] and [21]. In both paper, 

the seven classes were generated by same parametric 

equations. In [10], the test accuracy was obtained as 94.93% 

by using SOLAR. In [21], the test accuracy was obtained as 

90.4% by using the decision tree. On the other hand, in this 

paper, the test accuracy was obtained as 99.57%. It is clearly 

seen that the proposed feature extraction approach in this 

paper classifies effectively the power quality disturbances with 

different type. Also, test accuracy for the energy feature vector 

in this paper is 96.42%. This result shows that the used 

classification system based on the SVM and the DWT has the 

best classification performance with respect to [10] and [21]. 

TABLE II 

CLASSIFICATION RESULTS BASED ON ENERGY FEATURE VECTOR 

True Class C1 C2 C3 C4 C5 C6 C7 Accuracy (%)  

C1 200 0 0 0 0 0 0 100 

C2 1 167 0 32 0 0 0 83.5 

C3 1 0 199 0 0 0 0 99.5 

C4 0 12 0 188 0 0 0 94 

C5 0 0 0 0 200 0 0 100 

C6 0 0 0 0 3 197 0 98.5 

C7 0 0 0 0 1 0 199 99.5 

 Overall success rate (%) : 96.42  
 

TABLE III 

CLASSIFICATION RESULTS BASED ON THE SHANNON ENTROPY 

FEATURE VECTOR 

True Class C1 C2 C3 C4 C5 C6 C7 Accuracy (%)  

C1 200 0 0 0 0 0 0 100 

C2 0 173 0 27 0 0 0 86.5 

C3 0 0 200 0 0 0 0 100 

C4 0 36 0 164 0 0 0 82 

C5 0 0 0 0 200 0 0 100 

C6 0 0 0 0 4 196 0 98 

C7 0 0 1 0 2 1 199 98 

 Overall success rate (%) : 94.93  
 

TABLE IV 

CLASSIFICATION RESULTS BASED ON THE LOG-ENERGY ENTROPY 

FEATURE VECTOR 

True Class C1 C2 C3 C4 C5 C6 C7 Accuracy (%)  

C1 200 0 0 0 0 0 0 100 

C2 0 176 1 23 0 0 0 88 

C3 0 4 196 0 0 0 0 98 

C4 0 4 0 196 0 0 0 98 

C5 0 0 0 0 200 0 0 100 

C6 0 0 0 0 0 194 6 97 

C7 0 0 0 0 0 2 198 99 

 Overall success rate (%) : 97.14  
 

TABLE V 

CLASSIFICATION RESULTS BASED ON COMBINED FEATURE VECTOR 

True Class C1 C2 C3 C4 C5 C6 C7 Accuracy (%)  

C1 200 0 0 0 0 0 0 100 

C2 0 195 0 5 0 0 0 97.5 

C3 0 0 200 0 0 0 0 100 

C4 0 1 0 199 0 0 0 99.5 

C5 0 0 0 0 200 0 0 100 

C6 0 0 0 0 0 200 0 100 

C7 0 0 0 0 0 0 200 100 

 Overall success rate (%) : 99.57  

 



VI.  CONCLUSIONS 

This paper considers an efficient feature extraction 

approach to classifying the PQ disturbances, relying on the 

SVM classifier and the DWT. In this approach, three feature 

vectors for each disturbance signal are firstly obtained by 

using different feature extraction methods and are examined 

for evaluating of classification performance. Then, a combined 

feature vector is obtained from standard deviation of features 

belonging to these methods. The experimental results show 

that the proposed combined feature vector has effectively a 

classification capability the PQ disturbances. Moreover, the 

proposed method can reduce the quantity of extracted features 

of disturbance signal without losing its property. Thus, the 

classifier system based on proposed feature extraction method 

needs less memory space and less computing time at both the 

training and testing processes. 
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