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Abstract—This paper defines and measures synchrophasors 

based on the symmetry principles. The paper first defined the 

frequency associated with a rotation phase angle, and creates a 

symmetry group for measuring frequency and amplitude. Then, 

the paper defines synchrophasors in the complex plane and 

creates symmetry groups for measuring synchrophasors. 

Furthermore, the paper defines and measures time 

synchrophasors and space synchrophasors. The paper also 

introduces symmetry breaking criteria to raise the precision of 

the novel method. At last, a numerical example shows the novel 

method is effective for power systems. 

 

Keywords: frequency measurement, group theory, invariant, 

smart meters, spiral vector theory, synchrophasors, PMU.  

I.  INTRODUCTION 

ynchrophasors definition is very important for developing 

PMU(phasor measurement unit). It is popular to define 

and measure synchrophasors associated with nominal system 

frequency (50Hz or 60Hz) and DFT [1-2]. On the other hand, 

the symmetry principles play a very important role in relative 

theory and quantum mechanics [3]. In the process of applying 

spiral vector theory to the analysis of AC systems [4-11], we 

discovered that spiral vectors have symmetry properties. 

Therefore, we have been applying group theory to the analysis 

of AC systems [12-13]. This paper introduces development 

results on synchrophasors. The paper is organized as 

following: Section II covers measuring frequency and 

amplitude with symmetry groups; Section III presents defining 

and measuring synchrophasors with symmetry groups; Section 

IV provides a numerical example. Section V is conclusions of 

the paper. 

II.  MEASURING FREQUENCY AND AMPLITUDE WITH 

SYMMETRY GROUPS 

In this section we shall propose frequency and amplitude 

measuring method based on group theory. 

A.  Defining the frequency associated with a rotation 

phase angle 

Let us recall that in [12], we defined the frequency with a 

rotation phase angle as 
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where f is real frequency, fS is the sampling frequency, and α is 

the rotation phase angle in an interval of time T that is 

expressed as 

Sf
T

1
=  (2) 

 In addition, the angular velocity ω can be expressed as 

fπω 2=  (3) 

With the relation of (1), we switched the task for measuring 

the frequency to the task for measuring the rotation phase 

angle. Fortunately, we discover that the rotation phase angle 

can be obtained with symmetry groups and next we show the 

detailed procedure. 

B.  Creating a symmetry group for obtaining invariants 

depending on the rotation phase angle 

Let’s consider four rotating voltage vectors in the complex 

plane as in Fig.1 as 
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where V is voltage amplitude, ω is the angular velocity, and α 

is the rotation phase angle. Then we can build a rotational 
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Fig. 1. Gauge difference voltage group is rotating in 

the complex plane 
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group containing three difference voltage vectors as 
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Substituting (4) into the above expression, we can obtain 
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Considering the above group, we can find that three 

members are symmetrical about the middle one geometrically. 

Suppose (6) is a symmetry group, we propose an invariant 

formula as 

2321
2

22 vvvVgd −=  (7) 

where v21, v22, and v23 are the real or imaginary parts of three 

members of (6). For evaluating the above formula, we 

substitute 
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into (7) and obtain the following result. Here Re indicates the 

real part of the complex number. 

2
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In spite of this, we substitute 
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into (7) and obtain (9) again. Here Im indicates the imaginary 

part of the complex number. Because both the real and 

imaginary parts of three members of (6) lead the same result 

(9), it shows that (6) is truly a symmetry group. Therefore we 

call invariant Vgd as gauge difference voltage and call (6) as 

gauge difference voltage group. Next we shall discover 

another invariant of this symmetry group. 

C.  Obtaining frequency coefficient with gauge 

difference voltage group 

Hereafter we propose frequency coefficient formula as 

22
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2v

vv
fC

+
=  (11) 

where v21, v22, and v23 are the real or imaginary parts of three 

members of (6). For evaluating the above formula, we 

substitute (8) into (11) and obtain 

αcos=Cf  (12) 

In spite of this, we substitute (10) into (11) and obtain the 

above result again. Same as (9), this shows that frequency 

coefficient fC is an invariant of gauge difference voltage group. 

Next we shall employ frequency coefficient and gauge 

difference voltage to obtain the frequency and voltage 

amplitude. 

D.  Obtaining the frequency and voltage amplitude 

with gauge difference voltage group 

Thus, (12) shows that we can obtain the rotation phase angle 

as 

Cf
1cos−

=α  (13) 

As a natural consequence of this, substitute the above 

equation into (1), we obtain the frequency as 

C
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f
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Furthermore, (12) shows that we can obtain the sine of the 

rotation phase angle as 

22 1cos1sin Cf−=−= αα  (15) 

and the sine of half rotation phase angle as 

2

1

2

cos1

2
sin Cf−

=
−

=
αα

 (16) 

Fortunately, substituting (15) and (16) into (9), we obtain 

voltage amplitude as 
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The above solution is useful for real time control systems 

because it contains only arithmetic operations. Next we 

evaluating frequency spectrum of the novel method. 

E.  Evaluating frequency spectrum of the novel method 

Hereafter we act a simulation with the sampling frequency 

of 600 Hz and assume that test waveforms are pure sinusoids. 

The simulation results are shown in Fig.2 and Fig.3 

respectively. Like (12), Fig. 2 shows that frequency coefficient 

is the cosine function of the rotation phase angle. Figure 3 

shows that the novel method can obtain real frequency if it is 

lower than the Nyquist frequency (here 300 Hz) and this 

agrees with the sampling theorem. 
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Fig. 2. Simulation results of frequency coefficient for 

the sampling frequency of 600Hz 
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In the following, we shall employ obtained rotation phase 

angle and voltage amplitude to measure synchrophasors. 

III.  DEFINING AND MEASURING SYNCHROPHASORS WITH 

SYMMETRY GROUPS 

In this section we shall define and measure synchrophasors 

based on group theory. 

A.  Defining a synchrophasor in the complex plane 

At first, we define a synchrophasor as an instantaneous 

phase angle of a counterclockwise rotating vector with the 

velocity of real frequency in the complex plane. Thus we aim 

to obtain instantaneous phase angle φ in Fig.4. It is clearly that 

we can calculate this phase angle straightforwardly as [9] 
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−

V

vre1cosϕ  (18) 

where vre is instantaneous voltage and V is voltage amplitude. 

Because the arccosine function is always positive, the above 

rotating phase angle has two rotating directions. Namely, one 

is a counterclockwise direction; the other is a clockwise 

direction. Unfortunately, two rotating directions will cause 

problems in calculating time synchrophasors and space 

synchrophasors that are the difference phase angle of two 

synchrophasors. Though in [9], we developed a latch mode for 

avoiding this difficult, it is still a big problem to fast determine 

time synchrophasors and space synchrophasors at any time. 

Fortunately, in the process to create symmetry groups for 

measuring active power and reactive power [13], we got an 

idea that employing gauge power group to measure 

synchrophasors. The idea is that replacing rotating current 

vectors in gauge power group with fixed unit vectors and 

calculating phase angle between rotating voltage vectors and 

fixed unit vectors. In the next way, we shall show the idea is 

effective to calculate synchrophasors. 

B.  Creating symmetry groups for measuring 

synchrophasors 

At first, in Fig.4, we build a rotational group composed of 

three rotating voltage vectors and two fixed unit vectors as five 

members as 
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where α is the rotation phase angle and φ is the synchrophasor. 

Hereafter, we choose two rotating voltage vectors and two 

fixed unit vectors from (19) as four members to build a 

rotational group as 
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Suppose the above group is a symmetry group, we propose 

an invariant formula as 

1001310112 vvvvSAP −=  (21) 

where v12,v13,v100, and v101 are the real or imaginary parts of 

four members of (20). For evaluating the above formula, we 

substitute the real parts of four members 
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into (21) and obtain 
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In spite of this, we substitute the imaginary parts of four 

members 
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into (21) and obtain (23) again. This shows that (20) is truly a 

symmetry group and SAP is an invariant of (20). However, the 

expression of SAP is familiar with the expression of gauge 
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Fig. 3. Simulation results of measurement precision 

for the sampling frequency of 600Hz 
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active power [13], we call SAP as gauge active synchrophasor 

and call (20) as gauge active synchrophasor group. 

In a similar way, we choose another two rotating voltage 

vectors and two fixed unit vectors from (19) as four members 

to build a rotational group as 
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Suppose the above group is a symmetry group, we propose 

an invariant formula as 

1001210111 vvvvSAQ −=  (26) 

where v11,v12,v100, and v101 are the real or imaginary parts of 

four members of (25). For evaluating the above formula, we 

substitute the real parts of four members 
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into (26) and obtain 

ϕα sinsinVSAQ −=  (28) 

In spite of this, we substitute the imaginary parts of four 

members 
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into (26) and obtain (28) again. This shows that (25) is truly a 

symmetry group and SAQ is an invariant of (25). However, the 

expression of SAQ is familiar with the expression of gauge 

reactive power [13], we call SAQ as gauge reactive 

synchrophasor and call (25) as gauge reactive synchrophasor 

group. 

  Recall the group (19), it is called as gauge synchrophasor 

group due to it contains gauge active synchrophasor group and 

gauge reactive synchrophasor group. 

Therefore, we combine (23), (28) and obtain the cosine of 

the synchrophasor as 

α
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Then, substituting the sine and cosine function of the 

rotation phase angle into the above equation, we determine the 

synchrophasor as 
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At last, we truly obtain the synchrophasor that has only one 

rotating direction. In addition, the range of synchrophasors is 

from -180 to +180 degrees. Next we shall define and measure 

time synchrophasors. 

C.  Defining and measuring time synchrophasors 

We define time synchrophasors as the difference phase 

angle between the present time and an interval of time T0 ago. 

In addition, the range of time synchrophasors is from -180 to 

+180 degrees. Therefore time synchrophasors is calculated as 










−

−<−+−

>−−−

=

−

−−

−−

othersTtt

TttTtt

TttTtt

TP

,

,2

,2

0

00

00

ϕϕ

πϕϕπϕϕ

πϕϕπϕϕ

ϕ  (32) 

where φt is the synchrophasor at the present time, and φt-T0 is 

the synchrophasor at T0 time ago. Time synchrophasors can be 

employed in synchronous switching controller (SSC). SSC will 

forecast rotating time between the present time point and a 

give point by calculating the difference phase angle between 

these two points. Usually, a given point indicates that real 

value of current is zero and the synchrophasor of current is -90 

or 90 degrees at this point. Next we shall define and measure 

space synchrophasors. 

D.  Defining and measuring space synchrophasors 

We define space synchrophasors as the difference phase 

angle between two synchrophasors at the same time. Then the 

synchrophasor should synchronized to Universal time 

coordinated (UTC) for calculating space synchrophasors that 

is the difference phase angle between two different nodes of 

power system. In addition, the range of space synchrophasors 

is from -180 to +180 degrees. Therefore space synchrophasors 

is calculated as 
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where φ1 is the synchrophasor of node 1, and φ2 is the 

synchrophasor of node 2 respectively. Assuming time tag of 

node1 is lead to node2. We determine the synchrophasor φ1 as 

)( 111 tϕϕ =  (34) 

where t1 is time tag of UTC in node 1, we determine the 

synchrophasor φ2 as 
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where t2 is time tag of UTC in node 2. The above equation 

corrected slip phase angle between two nodes. Space 

synchrophasors can be applied to PMU and PDC (Phasor data 

concentrators) to monitor stability of power systems. Space 

synchrophasors can also be applied to automatic synchronizers 

(ASY) for estimating time from now to the point that space 

synchrophasors of two sides is zero. 

Next we introduce symmetry breaking criteria for raising 

the precision of the novel method. 

E.  Symmetry breaking criteria 

According to group theory, if the invariant of a symmetry 

group is changed, symmetry is broken. Employing this concept, 

we can introduce symmetry breaking criteria to distinguish 
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between small disturbance and large disturbance. Hereafter we 

propose following formula as 

BRKTtCtC fff >− − )()(  (36) 

where fC(t) is frequency coefficient at the present time, fC(t-T) is 

frequency coefficient at an interval of time T ago, and fBRK is 

symmetry breaking setting respectively. 

  Firstly, we deal with the case of large disturbance. Because 

symmetry is broken in large disturbance condition, we can’t 

calculate the synchrophasor and the others. Thus, we latch the 

rotation phase angle, the frequency, and voltage amplitude as 
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where αt, ft, Vt are data at the present time and αt-T, ft-T, Vt-T are 

data at an interval T ago respectively. On the other hand, we 

estimate the synchrophasor at the present time as 
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where φt-T is the synchrophasor at an interval of time T ago. 

  Secondly, we deal with the case of small disturbance. For 

reducing influence of additive noise in small disturbance 

condition, we can employ several symmetry groups for 

averaging invariants. 

We can use several gauge difference voltage groups for 

averaging frequency coefficient as 
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where v2k are difference voltages. 

We can use several gauge difference voltage groups for 

averaging gauge difference voltage as 
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where v2k are difference voltages. 

We can use several gauge active synchrophasor groups for 

averaging gauge active synchrophasor as 
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where v1k is instantaneous voltages, v10k are fixed unit vectors 

and calculated as 

2,1,0),cos(10 −== nkkv k Kα  (42) 

We can use several gauge reactive synchrophasor groups 

for averaging gauge reactive synchrophasor as 
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where v1k is instantaneous voltages, v10k are fixed unit vectors. 

For the reason smart meters are becoming more and more 

important for developing smart grid, we shall apply the novel 

method to smart meters. 

F.  Optimal sampling frequency for smart meters 

Let us recall Fig.2 and Fig.3, we consider the frequency is 

equal to half of the Nyquist frequency and calculate frequency 

coefficient, voltage amplitude, and the synchrophasor as 

following respectively.  
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Therefore we can propose optimal sampling for smart 

meters. One is that we recommend the sampling frequency of 

200 Hz for the rated frequency of 50 Hz power systems, the 

other is that we recommend the sampling frequency of 240 Hz 

for the rated frequency of 60 Hz power systems. 

In summary, we give the procedure for measuring 

synchrophasors. 

G.  Procedure for measuring synchrophasors 

Figure 5 shows the procedure for measuring synchrophasors. 

Step 4 promises measured frequency, amplitude, and 

synchrophasors are results of approximation sinusoids. 

However, for particular application, it is not necessary to 

employ all these twelve steps. For example, we can use step 1-

6 to build up a low-voltage protective relay that is not 

influenced by DC offset components. 

Next, we give a numerical example to test the novel method. 
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Fig. 5. Procedure for measuring synchrophasors 
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IV.  NUMERICAL EXAMPLE 

In this section, we shall give a phase step test numerical 

example that taken from IEEE Standard [2]. 

According to Table I, the real-valued function of test 

waveform can be expressed as 





>++

≤+
=

5.0),2/19.390cos(

5.0),4363.019.390cos(

tt

tt
v

C πϕ
 (47) 

where φC is the phase angle at the point of variation. 

We plot some simulation results from Fig.6 to Fig.10. 

As shown in Fig.6, frequency coefficient is calculated as 

6874.0
2 22

2321 =
+

=
v

vv
fC  (48) 

According to Table I, we calculate symmetry breaking 

criterion as 

01.0)()( >− −TtCtC ff  (49) 

Figure 6 shows that three points after the point of variation 

changed largely and symmetry is broken. In the time of 

symmetry breaking duration, we latch the rotation phase angle, 

the frequency, voltage amplitude and estimate the 

synchrophasor respectively.  

As shown in Fig. 7, we calculate the rotation phase angle as 

575.46cos 1
==

−
Cfα (degree) (50) 

And, the frequency is obtained as 

10.62
2

== α
π

Sf
f (Hz) (51) 

As shown in Fig. 8, we calculate voltage amplitude as 

0.1
1)1(2

2
=

+−
==

CC

gd

ff

V
V  (V) (52) 

And, gauge difference voltage is obtained as 

5743.02321
2

22 =−= vvvVgd  (V) (53) 

Figure 8 shows that gauge difference voltage is influenced 

by phase step that is large disturbance. This shows that same as 

frequency coefficient, we can use the difference of two gauge 

difference voltage as symmetry breaking criterion to 

distinguish between small disturbance and large disturbance. 

As shown in Fig. 9, simulation results of synchrophasors 

that are calculated based on (31) agree with definition 

proposed in this paper. One is that the range of synchrophasors 

is -180 to +180 degrees; the other is that the rotation direction 

of synchrophasor is a counterclockwise direction. 

 

TABLE I 

PARAMETERS OF PHASE STEP TEST 

Symbol Item Parameter 

fS Sampling frequency 480 Hz 

n Sampling points 4 

fBRK Symmetry breaking setting 0.01 

f Real frequency 62.1 Hz 

V Voltage amplitude 1 V 

φ Initial voltage phase angle 25 Degree 

Tc Phase change time 90 degree rise in 0.05S  

Tend Simulation time range 0-0.1 S 
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Fig. 8. Simulation results of gauge difference voltage 

and voltage amplitude 
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Fig. 6. Simulation results of frequency coefficient 
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Fig. 9. Simulation results of synchrophasors 
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Fig. 7. Simulation results of the rotation phase angle 

and the frequency 
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As shown in Fig.10, we can calculate time synchrophasors 

before the point of variation as 

6.12360
60

601.62
0

=×
−

=−= −TttTP ϕϕϕ (degree) (54) 

Here the interval time of time synchrophasors is set as one 

cycle of the rated frequency as 

60

1
0 =T (seconds) (55) 

In the transition area, we can calculate time synchrophasors 

as 

6.102906.12
0

=+=−= −TttTP ϕϕϕ (degree) (56) 

Figure 10 shows that time synchrophasors can take 

snapshot to record flicker of voltage. 

At last, we give conclusions. 

V.  CONCLUSIONS 

Guiding by symmetry thinking, we created gauge difference 

voltage group to calculate frequency coefficient and gauge 

difference voltage. Employing these invariants of symmetry 

groups we proposed formulae for calculating the frequency 

and voltage amplitude. Then, after creating gauge active 

synchrophasor group to obtain gauge active synchrophasor, 

and creating gauge reactive synchrophasor group to obtain 

gauge reactive synchrophasor, we got the synchrophasor. In 

the next way, we defined and measured time synchrophasors 

and space synchrophasors. Furthermore, for raising the 

precision of the novel method, we introduced symmetry 

breaking criteria. The numerical example illustrated that the 

novel method is effective. 

At last, we show the difference between the novel method 

and popular methods. Firstly, the former develops 

synchrophasors based on group theory, the latter develops 

synchrophasors based on DFT; secondly, the former take 

synchrophasors associated with real frequency, the latter take 

synchrophasors associated with nominal system frequency; 

lastly, the formers deal with waveforms of single phase, the 

latter deal with waveforms of three phase. 

We shall have been applying the symmetry principles to 

power systems continuously. 
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Fig. 10. Simulation results of time synchrophasors 


