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Abstract—This  paper  presents  a  real-time  phase-domain 
synchronous machine model for generator protection relay testing 
and its real-time implementation. The model allows full protection 
scheme  validation  including  split-phase  differential  and  stator-
ground fault protections. Space harmonics are considered through 
the  use  of  modified  winding  function  theory,  which  is  used  to 
represent  arbitrary  winding  distributions  and  internal 
asymmetries, such as internal faults. The model and its theoretical 
basis  are  briefly  presented;  the  real-time  implementation,  its 
results  and  the  issues  encountered  in  relation  to  the  model 
computation  complexity  are  discussed.  Finally,  the  real-time 
hardware-in-the-loop (HIL) testing of a generator protection relay 
is detailed.
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I.  INTRODUCTION

YNCHRONOUS  alternators  are  the  heart  of  power 
generating  facilities  and,  as  such,  are  protected  and 

monitored by sophisticated devices. In order to safeguard the 
generators,  protection relays typically monitor  the alternator's 
terminal and neutral point voltages and several currents (in and 
out of each phase, neutral, field, etc.). With all this information, 
the relays are able to detect abnormal behaviors, such as internal 
faults,  and  cease  operations  to avoid  or  limit  damage  to the 
generator.

S

Before approving  and  commissioning  generator  protection 
relays,  extensive  testing  is  required,  either  as  laboratory  (or 
field)  experimental  testing  or  real-time  hardware-in-the-loop 
(HIL) simulations, to validate protection schemes and determine 
appropriate settings. The first approach is time-consuming and 
costly  while  the  latter  is  limited  by  the  simulation  models' 
abilities  to  represent  adequately  the  synchronous-machine 
behavior  with all  its  subtleties.  On the other  hand,  real-time 
simulation allows the evaluation of the tested device's impact on 
the power  grid  and  the  identification  of  adverse  interactions 
with existing equipments and controls.

The  scientific  literature  presents  several  models  of 
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synchronous  machine  that  have  been  implemented  for  HIL 
simulations.  A  large  portion  of  these  models  use  the  two-
reaction theory which yields a dq0 representation of the machine 
[1]. Quite elegant and computationally efficient, this modeling 
shines  in  network  studies  or  other  situations  where  only  the 
general behavior of the synchronous machine is required since 
major  assumptions  are  made  concerning  the  physical 
construction of the machine. For protection relay testing, where 
protection  scheme  rely  on subtle  phenomena  to evaluate  the 
machine state, a more complex representation is needed.

The phase-domain (PD) representation is able to overcome 
the shortcomings of the dq0 modeling by taking into account 
machine constructions realities such as parallel phase windings, 
arbitrary  winding  distributions  and  internal  asymmetries. 
Several implementations have been presented for internal fault 
modeling, each with its own flavor (real-time or not, interfaced 
or embedded, current or voltage injections, etc.)  [2]-[7]. While 
being very interesting, these models, as presented, are limited to 
single windings per phase or assume concentrated or sinusoidal-
distributed windings, which is not representative of a majority 
of synchronous generators and limits the types of internal fault 
that can be portrayed. In fact, high power synchronous machine 
have several parallel-connected windings to form each phase, 
typically between two for high-rotation speed turbo-generators 
and six for low-speed hydraulic generators.

As for internal  faults, the models mentioned consider only 
whole phase faults. In light of the parallel phase windings in real 
machines, the probabilities of a whole phase being shorted to 
ground, which implies multiple shorts occurring at exactly the 
same time on several windings spatially distributed around the 
machine stator,  are rather  slim and such situations are rather 
unrealistic.

The real-time implementation presented in this paper is an 
improved version of X. Tu's model [6]-[7] that supports parallel 
phase  windings  with  arbitrary  distributions  and  internal 
asymmetries, neutral impedance as well as internal stator-stator 
and  stator-ground  faults.  Improvements  include  enhanced 
mathematical  stability,  refined  real-time  capabilities  and  full 
integration  into  Hypersim,  a  digital  real-time  simulator 
developed and used at Hydro-Québec's Research Institute [14]. 
Modified winding function theory  [7] is used to calculate the 
inductances  of  the  machine.  This  approach  requires  the 
machine's  winding  diagram or  the sequential  ordering  of the 
winding conductors in addition to the usual standard electrical 
parameters. While it requires more data than other models, this 
technique  allows  arbitrary  winding  distributions  and 
nonuniform air-gaps which translate into the presence of space 
harmonics in the machine's signals.



The rest  of  the paper  is  divided  in  four  parts:  Section II 
describes the simulation model while Section III discusses the 
real-time  implementation  and  performances;  Section  IV 
presents  a  full  protection  scheme  HIL  testing  of  an  Areva 
MiCOM P343 protection relay and, finally, concluding remarks 
are stated in Section V.

II.  PHASE-DOMAIN SYNCHRONOUS-MACHINE MODELING

The present  model keeps the fixed-reference frame for all 
stator  windings  (up  to  six  per  phase)  but  uses  a  d-q 
representation of  the rotor  [8]  as seen in  Fig.  1.  Round-pole 
machines make use of all rotor windings (field, d damper and 
two dampers on the q axis) while only one q damper winding is 
necessary for salient-pole machines.

The voltage equations are expressed as 

vabcs=Rs i abcss abcs
vqdr=Rr i qdrs qdr

(1)

where  s subscript  variables  refer  to  the  phase-domain  stator 
windings and the r subscripts to the d-q rotor elements. The size 
of the stator terms is equal to the total number of stator windings 
(to reduce the display size of the following formulas, a machine 
with single winding per phase is assumed). The flux linkage () 
equation can be written as follows with stator-referenced rotor 
terms noted with a prime mark.

[ abcs 'qdr
]=[

Lsr L' sr r

2
3
L' sr r

T L' r ][ i abcsi 'qdr
] (2)

Using a non-uniform air-gap approximation, which yields a 
constant inductance LA and a sinusoidal term, LB, with twice the 
electrical rotor angular velocity, the stator inductance matrix Ls 

takes the following form:

Ls=[
LlsLA−LBcos A −LA /2−L BcosB  −LA /2−LB cosC

−LA /2−LB cosB  LlsLA−LB cosC −L A /2−LB cos A
−LA /2−LB cos C −L A /2−LBcos A LlsLA−LBcos B

] (3)

Lls is the leakage inductance and A, B and C equal to 2r, 2r-
2/3 and 2r+2/3 respectively. 

The stator-rotor and rotor inductance matrices are defined in 
(4) and (5) where Lmd and Lmq are the d- and q-axis magnetizing 
inductances and  L'lfd,  L'lkd,  L'lkq1 and  L'lkq2 the stator-referenced 
leakage  inductance  of  the  field,  the  d-  and  q-axis  damper 
windings respectively. 

L ' sr=[
Lmqcosr ... Lmdsinr  ...

Lmqcosr−2/3  ... Lmdsin r−2/3 ...
Lmqcosr2/3  ... Lmdsin r2/3 ...] (4)

L' r=[
L 'lkq1Lmq Lmq 0 0

Lmq L ' lkq2Lmq 0 0
0 0 L' lfdLmd Lmd

0 0 Lmd L ' lkdLmd
]

(5)

Equations (3) and (4) assume sinusoidal stator windings for 
simplicity's sake;  arbitrary winding distributions alter slightly 

the form of the stator related terms as presented later in this 
section.

If  all  these  winding  inductances  and  related  resistances, 
(usually  referred  to  as  “fundamental”  parameters)  are  not 
available for a given machine,  they can be deduced from the 
more easily procurable “standard” parameters (Xd, Xd', Xd'', etc.) 
by using available conversion methods [9]-[10].

Fig. 1.   Diagram of  N  parallel-connected  winding circuits  per  phase  with 
neutral impedance (upper) and d-q rotor representation with field and three 
damper windings (lower).

Before  describing  the  inductance  calculations,  a  brief 
overview of winding function theory is given.

A.  Winding Functions

The subtleties of the physical  construction of synchronous 
machines used in power generating facilities are more than often 
neglected in models used for transient and stability simulations. 
Winding function theory is widely used to incorporate details of 
the  machine  construction  into  the  inductance  analytical 
calculations [5]-[7][11][12]. This representation of the windings 
is in a fact a simplified image of the magnetomotive force as a 
function of the spatial distribution around the stator structure of 
the windings' coils. In the present model, each stator winding is 
represented by its winding function in order to establish the self 
and  mutual  inductances.  The  winding  functions  are  easily 
constructed from the machine characteristics: number of poles, 
stator slots, conductors per slots and the winding order of the 
machine, i.e. the sequence of slots occupied by specific coils. As 
one can observe from Fig. 2, winding functions allow a more 
realistic representation of the windings, which will translate as 
harmonics in the machine's currents and voltages. 

B.  Inductance calculations

Once the winding functions for all windings are established, 
they are used in the following expression to compute the self 
and mutual stator inductances: 

Lyx=Lxy=K0 Axy−K 2Bxy (6)

Axy=〈 nx n y 〉 – 〈 nx 〉 〈n y 〉
Bxy= 〈n x nycos2p−r 〉 – 〈 n x 〉 〈ny cos2p−r 〉

– 〈 n y 〉 〈 nx cos2p−r 〉
(7)

where  X〈 〉 is the average value of  X  on a 2 interval,  nx the 



winding function of  x,  p the number of pairs of poles,  θr the 
electrical rotor angle,  the inspection angle around the stator 
and Kx are geometrical coefficients. Since winding functions are 
solely a  function of  ,  (7)  can be  reduced to this simplified 
form:

Lyx r = Lxyr = Lxy0Lxy1cos2prLxy2 sin2pr (8)

It is of interest to note the similarity between the simplified form 
and the inductances expressions in (2). For perfectly sinusoidal 
winding distributions with ideal phase balance, all mutuals have 
the same continuous and alternate amplitude values and perfect 
spatial  distribution  (2/3  phase  spacing).  These  analytically 
convenient  characteristics  allow  the  passage  to  dq0 
representation  and  in  the  process  subtleties  of  the  machine 
behavior  are  lost,  which  is  unacceptable  for  the  present 
application. Consequently, it is necessary to take into account 
the differences between self and mutual inductance in all  the 
machine's windings.

Fig. 2.  Winding function example of twin parallel windings, four poles, 60- 
slot  alternator  and  its  related  space  harmonics.  The  fundamental  space 
harmonic  corresponds  to  the  number  of  pairs  of  poles,  two  in  this  case. 
Higher harmonics with considerable amplitude are also present.

K0 and  K2 are geometric coefficients that link the winding 
functions  and  the  measured  magnetizing  inductances  of  the 
machine. They are established by first computing (6) with unity 
coefficients  for  LAA  and  LAB.  Then,  using  the  terms  in  the 
simplified  form,  the  geometrical  constants  are  obtained  as 
shown in (9). All the stator inductances are then computed.

K 0=
LmdLmq 

2LAA0−LAB0 
K2=

 Lmd−Lmq

LAA1 ²L AA2 ²2L AB1²LAB2 ²
(9)

The approach is similar for stator-rotor mutual inductances, 
again with two geometrical constants.

K r1=−
Lmd

∫
0

2

nA cospd

K r2=
Lmq

∫
0

2

nAcos pd
(10)

L ' xfd=L' xkd=K r1〈nx sin p −〉

L' xkq1=L' xkq2=K r2〈nx cosp −〉
(11)

C.  Internal Faults

Winding  function  theory  is  well  suited  to  represent  internal 
faults since these can be regarded as asymmetries in the winding 
distribution  of  the  machine.  The  present  model  treats  faulty 
windings  as  several  normal  windings,  with  lesser  coils, 
connected to ground or to another phase winding in the case of 
stator-ground or stator-stator fault respectively as seen in Fig. 3. 
The winding functions of the sub-windings are computed and 
used  to  obtain  the  related  self  and  mutual  inductances. 
Additional equations are then inserted in (2).

Fig. 3.  Representation of an internal fault between winding A2 and B2 inside 
a twin parallel-connected winding machine. Each faulty winding is divided 
into two and connected through fault resistors. The type of the fault, stator-
stator or stator-ground, is determined by the value of the different resistors.

The proposed model supports eight types of stator internal 
faults, namely:

• Single winding-ground;
• Shorted turns;
• Winding-winding (single, 2 and 3 phases);
• Winding-winding-ground (single, 2 and 3 phases).

III.  REAL-TIME IMPLEMENTATION

The  digital  implementation  of  the  model  used  (1)  as  the 
starting  point  to  which  was  added  the  neutral  and  fault 
impedance matrix:

v t =RRgR f i ts LtLgLf i t  (12)

where the voltage and current vectors take the following form 
for a N parallel-connected round-pole machine with winding A2 

faulted.

v=[ v A1v Af1v Af2... v AN vB1 ... vBN vC1... vCN v fd ' 0 0 0 ]
i=[ iA1i Af1iAf2 ...i AN iB1 ...iBN iC1 ...iCN i fd ' ikd ' ikq1' ikq2 ' ]

(13)

R is a diagonal matrix containing the winding resistances, L the 
rotor position dependent inductance block matrix defined in (2), 
g and  f subscript matrices are filled with the ground and fault 
elements  respectively.  Here,  one  must  remember  that  prime-
marked variables are referenced to the stator side. Rearranging 
the equation and applying the trapezoidal discretization yields 
the recurrent equation below.

in=Xn
bt s

2
RT

−1

[Xn−1−
b t s

2
RT in−1

b t s

2
 vnvn−1] (14)

Variables  with  n and  n-1 subscripts refer  to the current  and 
previous time step respectively,  X contains  the machine  and 
ground inductances while RT is the total resistance matrix, b is 



the nominal angular speed and ts the time step length in seconds.
The present form was preferred over the approach taken in 

[7] since it lessens the already important computation burden. 
Furthermore,  the  discretization method used,  as  described  in 
[13],  has  stability  issues  and  adds  a  striking  amount  of 
computation work, that cannot be justified by the higher order 
accuracy for real-time performances. 

A.  Model Particularities

Porting the proposed model to real-time performances was 
challenging due to the time-varying inductance matrices and the 
number of highly-coupled differential equations to solve.

The phase-domain representation imposes that at every time 
step all  the  inductances  be  reevaluated  for  the  current  rotor 
position.  This task can appear  trivial  but the high number  of 
inductances  to  evaluate  and  the  computation  cost  of 
trigonometric  functions  make  it  not  so inconsequential.  And 
thus,  the  simplified  form  used  to  evaluate  the  inductances 
presented in (8) was expressed as a weighted sine and cosine 
contribution instead of  a  single  weighted sinusoidal  function 
with a phase offset. In this manner, two trigonometric functions 
are executed to evaluate the N(N+1)/2 different terms in Ls, that 
would  have  otherwise  required  the  same  amount  of 
trigonometric function calls.

Once the new inductance matrix is obtained, an inversion is 
required, as seen on the right-hand side of (14). Since the actual 
invert is not required, a LDLT Cholesky factorization followed 
by forward/backward substitutions is an efficient way to obtain 
the machine's currents.

A possible work-around would be to precalculate the inverse 
for a certain number of rotor positions and access these values at 
runtime. Interpolation, typically linear,  is then used to get the 
inverse corresponding to the exact rotor position. As discussed 
in [7] and [13], over 250 precalculated matrices are required for 
adequate simulation quality and the authors settled for 500 for 
their implementation. However, it was observed that, even with 
that resolution, after a few seconds of simulation, the tabulated 
method  resulted  in  a  little  offset  in  the  machine's  currents, 
particularly the field current. Higher resolution is mandatory in 
this case. These observations exacerbate the already important 
memory requirements of this approach (e.g. 720 25x25 matrices 
of double precision value equal approximately 3.51 MB) and 
execution performance would be slightly degraded due to higher 
cache  level  and/or  RAM  access.  Nonetheless,  if  memory 
requirements are of no concern and numerous high-level cache 
access  of  no  consequence,  precalculation  yields  the  fastest 
execution time.

B.  Internal Fault Modeling

As illustrated in  Fig.  3,  internal  faults are  represented by 
splitting faulty windings in sub-windings with fewer coils and 
fault resistances are added to the internal circuit. A two resistor 
approach  was  used  to  keep  the  same  matrix  dimensions 
throughout the entire simulation. The internal fault is activated 
by going from a really high value (> 1 M) to a small one (< 1 
m

Under  normal  operating  conditions,  parallel-connected 
windings  carry  the  same  current.  Thus  using  a  lumped-
equivalent  winding  leads  to an  execution time  reduction for 
healthy machines. This approach is interesting if internal faults 

are  not  mandatory.  Otherwise,  once  the  fault  happens,  all 
windings  must  be  considered  separately  since  they  do  not 
respond  exactly  in  the  same  way  to  the  internal  asymmetry 
introduced by the fault. Switching back and forth between the 
full  and  the reduced equation set  might  be tricky depending 
upon  the  specific  implementation  and  integration  method. 
Furthermore,  one  must  remember  that  in  the  end,  it  is  the 
execution time of  the faulty machine  that  dictates the usable 
time step threshold for real-time performances.

C.  Results and performances

A 370 MVA,  13.8 kV,  48 salient  poles machine  with six 
parallel-connected windings per phase was used to evaluate the 
execution time  of  the presented  model  on a  Sgi  Altix  4700 
computer sporting Intel's Itanium series 9000 processors. 

Figure 4 illustrates simulation results for a single winding-to-
ground  fault  at  45%  of  the  winding.  All  parallel-connected 
winding  currents  are  shown  in  addition  to  the  neutral 
impedance's  current.  In  steady  state  before  the  fault,  each 
parallel winding carries a sixth of the total phase current. In this 
example, the phase current is approximately 91% of the nominal 
peak value or around 14.2 kArms and thus each parallel winding 
carries around 15% of the whole phase nominal peak value, as 
shown in  Fig.  4.  As  can  be  observed  at  0.05 s,  the fault  is 
applied, resulting in disturbances in the phase A currents while 
phases B and C are less affected. It is important to notice that 
the parallel-connected windings of a specific phase do not carry 
the same current during an internal fault, since the relation of 
each individual winding to the faulty windings are not the same. 
This phenomenon can be exploited for a split-phase differential 
protection scheme. Such subtle cases are really challenging for 
models that do not consider parallel-connected windings.

The ground current presents the characteristic third harmonic 
component with an rms value of 0.92 A (the neutral  point is 
grounded through a high-value RL impedance). Once the fault is 
applied, the ground current's peak value jumped by a factor of 
almost eight. 

An example of shorted-turn fault simulation is given in Fig. 
5. This type of fault is difficult to detect due to the very limited 
impact  on  the  monitored  machine  signals,  as  seen  on  the 
terminal  currents,  and  often  leads  to  critical  damage  to  the 
generator due to excessive currents experienced by the shorted 
turns (Af2 carries almost four times its nominal current).

The execution time of the presented model falls between 33 
and 39  s for all the supported fault types. This also includes 
interprocessor  communication  time  since  the  internal-fault 
machine model is an independent simulation task, which means 
that the model imposes no limits on the size of the simulated 
power network to which is it attached.

Once  real-time  performance  was  achieved,  a  generator 
protection relay was connected to the simulator and the model 
was put to the test.

IV.  PROTECTION RELAY TESTING

For  generator  protection,  numerous protection devices  are 
implemented by the relay, as shown in Table I. It is interesting 
to note that  the presented  model  is  able  to  provide  realistic 
signals  to  test  all  the  listed  protection  devices  whereas  a 
conventional dq0 model would be hard-pressed for differential 



and  stator-ground  protection  devices.  Furthermore,  the 
suggested model is one of the few that allows validation of split-
phase differential protections (parallel-connected windings are 
split  in  two  groups  and  the  difference  between  the  current 
flowing in each group serves to identify internal faults).

Fig. 4.  Winding currents following a 45% stator-ground fault on winding A2 
in a six parallel-connected winding generator (total steady state phase current 
of 0.92 pu divided equally among the six healthy parallel phase windings) and 
neutral point current exhibiting distinctive third harmonic content.

Fig. 5.   Terminal (whole-phase)  and winding currents  following a 50-40% 
shorted-turn  fault  on  winding  A2  in  a  six  parallel-connected  winding 
generator.

A.  Experimental setup

For the experimentation, the simplified schematic illustrated 
in Fig. 6 was implemented and simulated with Hypersim. Two 
generators connected to the network through a three-winding 
transformer are represented here since the modeled machine is 
used in such way in the field. 

Alternator A1 is a generic machine and A2 is the winding 
function  model  with  internal  fault.  Both  machines  are  370-
MVA, 13.8-kV, 60-Hz and 48-salient-pole hydraulic alternators 
(the  winding  function  model  has  six  parallel-connected 
windings per phase). The machine standard parameters can be 
found in [13] but fundamental parameters were obtained using 
the conversion method described in [9]-[10].

TABLE I
USUAL PROTECTION DEVICE IN GENERATOR PROTECTION RELAY

Device Description
21P/C Phase Mho or Compensator distance

24 Volts-per-Hertz
25 Synchronism check
27 Undervoltage
32 Directional power
40 Loss-of-field
46 Negative sequence overcurrent

50P/G/N/Q Overcurrent (Phase, Ground, Neutral, neg. seQ.)

51G/N/V/C
Time overcurrent
(Ground, Neutral, Voltage restrained / Controlled)

59P/G/Q/N
Overvoltage
(Phase, Ground, neg. seQ., Neutral)

60 Loss-of-potential
64G 100-percent stator-ground
78 Out-of-step

81O/U Frequency (Over, Under)

87/N
Current Differential with terminal and neutral point 
current or with neutral impedance current (N)

Fig. 6.  Simplified schematic of the simulated network for protection relay 
testing.

Fig. 7.  Experimental setup for generator protection relay testing (the relay 
under test is an Areva MiCOM P343).

The relay under test is an Areva MiCOM P343 implementing 
most of the listed devices in Table I and more with the same 
settings and timing parameters as those in the field. The B2 bus 
bar  voltages,  terminal  currents,  neutral  point  currents  and 
neutral  point  voltage  are  fed  to the  protection  relay  through 
current and voltage amplifiers connected to the digital simulator 



as shown in Fig. 7. This signal conditioning is necessary since 
this specific  relay expects a certain current  and voltage level 
coming from the current or potential transformers.

B.  Results

The real-time simulation was done with a 50-s time step on 
a Sgi Altix with a single Itanium 2 processor. Several protection 
devices were tested but 95% and 100% stator-ground (64-1 and 
64-2)  as  well  as  current  differential  (87)  were  tested  more 
intensively. As expected, the field parameters were adequate to 
successfully  detect  internal  faults  of  various  types.  Figure  8 
illustrates comtrade recordings obtained from the P343 after a 
stator-stator  fault.  Protection  relays  are  set  to  be  extremely 
sensitive to complete-phase in and out current differentials and 
typically no delay device is implemented. This can be observed 
from the faultograph signals: as soon as the current differential 
is detected, approximately 0.6 cycles after the fault, protection 
device 87A is tripped simultaneously with the global generator 
isolation (S1 94C-2A-2B/A) signal.

Fig. 8.   Monitored signals extracted from the  COMTRADE file generated 
after a stator-stator fault (A2 50% - B2 45%). Differential protection device 
was  tripped  (87A)  which  resulted  in  the  simultaneous  shutdown  of  the 
generator (94C).

V.  CONCLUSIONS

A flexible phase-domain synchronous machine model and its 
real-time  implementation  were  discussed  and  its  usage 
demonstrated for  generator  protection relay  testing.  The  first 
part of the paper briefly explained the model and the inductance 

calculations  based  on  winding  function  theory.  This  method 
allows  representation  of  space  harmonics  due  to  the  spatial 
distribution of the windings around the machine's stator. Thus, 
the simulated machine exhibits the signature of a specific stator 
construction  instead  of  the  almost  “theoretical”  sinusoidal 
distribution  assumed  in  conventional  machine  models. 
Furthermore, the presented model considers parallel-connected 
windings,  which  permits  more  realistic  stator  faults  unlike 
models that make the assumption of lumped-equivalent whole-
phase windings. Fine tuning of relay settings also benefits from 
this  feature  since  more  subtle  behavior  disturbances  can  be 
represented. Real-time implementation issues are discussed in 
the second part of the paper. Challenges encountered and pitfalls 
of  real-time  modeling  are  described  and  the  model's 
optimization  since  its  previous  incarnation  is  explained.  The 
third part of the paper gave an example of generator protection 
relay testing. This model allows testing of all typical protection 
devices used for generator protection and, since all the parallel-
connected winding currents are available, differential protection 
schemes are not limited to a complete phase. This last feature 
can  be  exploited  for  the  development  of  more  complex 
protection schemes.
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