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1Abstract – Electromagnetic Transients (EMT) Simulation 
based on the Dommel algorithm requires a solution for the node 
voltage vector [v] in the equation [G][v] = [In] in each time-step. 
In  general, [G] is a symmetric positive definite conductance 
matrix with fixed sparsity fill, but the content of the filled 
locations changes with switching. [In] is the vector of nodal 
injections. Accordingly, one approach for solving for [v] in real-
time simulation involves sparse decomposition of [G] in each 
time-step using the Cholesky method followed by sparse forward 
and backward operations on [In] to produce [v] on a single 
processor core.  

Initially, the decomposition, forward and backward 
operations appear to be poorly suited for parallel computation 
because of the serial nature of the required operations. 

However, based on work in other areas of science, this paper 
describes a practical method for using multiple processor cores 
for solving the overall nodal equations [G][v] = [In] even when all 
nodes represented in the sparse [G] are connected by 
conductances. 
 
Keywords: Electromagnetic Transients Simulation, Cholesky 
Decomposition, Parallel. 

I.  INTRODUCTION 
Electromagnetic Transients (EMT) Simulation based on 

the Dommel algorithm requires a solution for the node voltage 
vector [v] in the equation [G][v] = [In] in each time-step. In 
general, [G] is a symmetric positive definite conductance 
matrix with fixed sparsity fill, but the content of the filled 
locations changes with switching.  [In] is the vector of nodal 
injections. Accordingly, one approach for solving for [v] in 
real-time simulation involves sparse decomposition of [G] in 
each time-step using the Cholesky method, followed by sparse 
forward and backward operations on [In] to produce [v] on a 
single processor core. 

Two factors indicate toward the future use of multiple 
processor cores for the decomposition of the connected sparse 
matrices [G] used in EMT simulation. 

First, the study of smart grid technology often requires the 
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simulation of lower voltage portions of the grid where 
transmission lines are shorter. In such portions of the grid, the 
travel times of the transmission lines can often be less than a 
typical time-step which precludes representing the lines with 
traveling wave line models. Without traveling wave line 
models, it is less likely that the overall conductance matrix [G] 
can be replaced by several smaller conductance matrices. 
Therefore, there is a trend toward modeling networks which 
require larger connected conductance matrices [G]. 

Second, processor clock speeds are no longer increasing 
significantly from year to year.  

Consequently, it is expected that the use of multiple 
processor cores will be required in future real-time EMT 
simulation in order to decompose and do the forward and 
backward operations for the ever larger conductance matrices 
while continuing to use existing or smaller time-steps. 

In other areas of science, sparse positive definite 
symmetric matrices with dimensions in the 10s of thousands 
[1] are partitioned so that parallel Cholesky decomposition 
can be applied using 10s or 100s of processor cores.  This 
paper describes initial efforts to adapt the methods used in 
these other areas to provide parallel decomposition of 
conductance matrices in EMT simulation. 

As one adaptation of the methods, the present paper 
describes a practical method for using multiple processor 
cores for solving the overall nodal equations when the 
network contains multiple embedded subnetworks, all 
connected by conductances. In this adaptation, one processor 
core is used to perform calculations related to each 
subnetwork and another processor core performs calculations 
related to the overall network matrix in which the 
subnetworks are embedded. 

An example of such a subnetwork, described in this paper, 
is a 12-pulse HVDC valve group model which includes 12 
valves, three three-winding transformers, two bypass 
switches, two disconnects, a fault branch and a reactor. The 
model contains (N=) 10 inner nodes, (M=) 5 perimeter nodes 
and 17 switches. The N inner nodes are connected by 
conductances only to other inner nodes and/or to the M 
perimeter nodes.  

The conductance matrix for the example valve group 
model is shown in Figure 1. The “A” area of the matrix is 
associated with the 10 inner nodes while the “D” area is 
associated with the 5 perimeter nodes.  

                                    
 

 



 
Fig. 1. Conductance Matrix of the HVDC Valve Group Model 
 
It is well known that the dimension of the overall network 

conductance matrix [G] can be reduced in dimension by 
elimination of the N inner nodes of each subnetwork from the 
overall network conductance matrix [G]. The elimination 
operation requires the preparation of  an overlay conductance 
matrix [Go] of dimension MxM for addition into the reduced 
dimension overall network matrix [Gr] in each time-step.  The 
computation of the overlay matrix [Go] is according to (1). 

 
           [Go] = [D] – [C][A]-1[B]                     (1) 
 
In theory, the computation of [Go] using (1) could be 

performed in each small time-step by a subnetwork processor 
core and then sent to the main network processor. However, 
the inversion of the eliminated node area “A” in Figure 1 is 
computationally intensive and it is better to avoid the matrix 
inversion in real-time simulation. 

Also, in theory, the overlay matrix [Go], to be added to the 
perimeter node area of the reduced overall network matrix 
[Gr], could be prepared in advance of the real-time simulation 
for each possible combination of switch states. However, 
computing 217=131,072 matrices in advance of the simulation 
and storing them for quick access in real-time EMT 
simulation is not a practical approach and does not support the 
use of branches with conductance values that can change over 
a continuous range. 

The difficulties associated with using the [Go] matrix 
calculated using (1) led to a search for other available 
techniques.  Fortunately, the large dimensions of the matrices 
in other areas of science [1] makes it imperative in those areas 
that multiple processors must be brought to bear on the 
solution of equations of form similar to [G][v] = [In].  This 
paper describes initial efforts to adapt the experience of other 
areas to the EMT simulation problem.  

In order to avoid using an excessively large number of 
equations in this paper, the Appendix contains typical “C” 
language code for a right-looking Cholesky decomposition 

and associated forward and backward operations. These 
operations involve using columns F to L inclusive of the 
lower triangle of a symmetric positive definite conductance 
matrix [G] and a nodal injection vector [In]. The operations  
described in the Appendix are referred to in this paper by 
notation: DECOMP(F:L), FORWARD(F:L) and 
BACKWARD(L:F).   

As an example of the use of the notation, when the 
equation [G][v] = [In] is solved on one processor, the 
sequence of operations required is a DECOMP(1:d) operation 
followed by a FORWARD(1:d) operation and a 
BACKWARD(d:1) operation where “d” is the dimension of 
[G]. This converts the nodal injection vector [In] into the node 
voltage vector [v]. 

II.  BACKGROUND 
Fortunately, the symmetric positive definite matrix 

equations solved in other areas of science [1][2] are relatively 
large compared to those typically used in power system EMT 
simulations. Such other matrices [1] can be of dimensions in 
excess of several 10s of thousands. This has required the 
development of techniques in those scientific areas which 
enable a single large connected positive definite symmetric 
matrix to be decomposed by 10s or 100s of processors acting 
in parallel.  The present paper cannot begin to catalog the 
numerous techniques that have been developed. However, the 
“spectral nested dissection” [2] technique is reviewed here 
because of it's apparent applicability to our EMT problem. 

The “spectral nested dissection” [2] is one example of the 
“nested dissection” techniques that recursively divide the 
nodes of the matrix into groups in order to determine a good 
parallel ordering of the matrix such that it can be factored 
efficiently by parallel processors. 

This review of the “spectral nested dissection” technique 
begins with the description of a constituent “spectral 
dissection” [2] technique which divides the solution of [G][v] 
= [In] between two processors. In this technique, a set of 
nodes is determined, the removal of which divides the overall 
matrix [G] into two disconnected parts. In the terminology of 
graph theory, the set of nodes constitute a “vertex separator”. 
A good “vertex separator” is one that has a small number of 
nodes and separates the remaining nodes into two groups of 
approximately the same size.  

In spectral dissection [2], a “Laplacian” matrix [Q] is 
prepared corresponding to the particular symmetric positive 
definite matrix [G] being considered. The matrix [Q] has the 
same dimension as the corresponding [G]. With respect to 
content, the matrix [Q] has diagonal elements of value “n” 
where “n” is equal to the number of non-zero off-diagonal 
elements in the particular corresponding row (or column) of 
[G]. The matrix [Q] also has off-diagonal elements of value -1 
wherever the corresponding [G] matrix has an off-diagonal 
element that is non-zero. The remaining elements of [Q] are 
equal to zero. Assuming that all nodes in the matrix [G] are 



connected together through conductance, the first eigenvalue 
of [Q] is 0.0 and the remaining eigenvalues are positive.  The 
smallest positive eigenvalue has a corresponding eigenvector 
referred to as the “Fiedler” vector [1].  The median value of 
the elements of the Fiedler vector can readily be found. Also, 
each node number in the matrices [Q] and [G] has a 
corresponding element in the Fiedler vector. The separation 
algorithm [1] proceeds by identifying a group of nodes X' 
which have corresponding  values in the Fiedler vector which 
are less than the median value of the Fiedler vector. 
Remaining nodes, not in the group X', are placed in another 
group, Y'. If several elements of the Fiedler vector are equal to 
the median, corresponding nodes are shifted from one group 
to the other group until the number of nodes in each group 
differs by, at most, 1.  The [G] matrix is thus partitioned into 
two groups of nodes, X' and Y'.  The algorithm proceeds by 
finding a subset of X' and a subset of Y' respectively referred 
to herein as X” and Y”. For a node in X' to be in the subset 
X”, the node in X' must share a non-zero off-diagonal entry (a 
g connection) in the [G] matrix with a node in the Y' node 
group. Nodes in the Y' group gain membership in the Y” 
subset in a similar manner. In graph theory terminology, the 
nodes X” and Y” (vertices) and the g connections (edges) 
form a bipartite graph. A typical bipartite graph is shown in 
Figure 2 with the X” node (vertex) group on the left and the 
Y” node (vertex) group on the right joined by g connections 
(edges) illustrated as lines. Either the X” group or the Y” 
group can be used as a “vertex separator”, the removal of 
which partitions [G]. However, often there exists a vertex 
separator with some nodes in X” and some nodes in Y” which 
contains fewer nodes than either the X” group or the Y” 
group. This minimum size vertex separator is referred to as 
the “minimum cover” of a bipartite graph and is found in 
conjunction with finding the “maximum matching” of the 
bipartite graph [1].  

 

 
Fig. 2. A Typical Bipartite Graph 

 
In Figure 3a), the vertex separator nodes, re-ordered into 

the largest node number locations of the matrix are illustrated 
as the X/Y portion of the matrix. The two separated node 
groups, X and Y, are associated with the portion of the matrix 
marked respectively as X and Y that are located to the left of 
the X/Y portion. The nodes in each of the separated groups 
are re-numbered so as to be consecutively placed.  The 
separated X and Y node groups are only connected through 
the vertex separator nodes X/Y. This is illustrated in Figure 
3a) by the absence of matrix entries in the portion of the 
matrix marked “nil”. Due to the lack of connection in the 
matrix to the left of the separator nodes, it is possible to think 
of the portion of the matrix to the left of the separator nodes as 
2 parallel matrices as illustrated in Figure 3b).  

 

 
Fig. 3a).Normal Planar Representation of a Matrix from Spectral 

Dissection 
 

 
Fig. 3b). Parallel Representation of a Matrix from Spectral 

Dissection 
 
Consequently, if there are “a” nodes in the separated node 

group X as shown in Figure 3b), then one processor core (X 
processor) can be used to perform a right-looking Cholesky 
decomposition on X for the “a” columns in X according to the 
decomposition operation, DECOMP(1:a) described in the 
Appendix.  Simultaneously, if there are “b” nodes in the 
separated node group Y, then another processor core (Y 



processor) can be used in parallel to perform a right-looking 
Cholesky decomposition on the Y area illustrated in Figure 
3b). Each of the processors can keep track of the net change 
on locations in X/Y due to subtractions that occur in the right-
looking DECOMP(1:a) and DECOMP(1:b) operations.  
Subsequently only one processor proceeds to do the 
decomposition operation on the X/Y area which contains “c” 
columns.  If the X processor will do the decomposition for the 
X/Y area, then the Y processor sends a list of adjustments for 
the X/Y area to the X processor. The X processor makes the 
listed adjustments to the X/Y area. If we number the first 
column of X/Y as “d”, then the X processor does the 
decomposition operation DECOMP(d:d+c-1) on the X/Y area. 

To obtain a solution for [G][v] = [In], the decomposition 
operation must be followed by forward and backward 
operations.  Fortunately, these can also be done in parallel for 
the X and Y areas.  

For the X area, a forward operation FORWARD(1:a) is 
done on the X processor as described in the Appendix. 
Similarly, for the Y area, a forward operation 
FORWARD(1:b) is done on the Y processor. When the X 
processor completes the FORWARD(1:a) operation, the 
vector of injections being operated on by the X processor has 
been reduced to a maximum dimension of “c”, associated with 
the number of columns in X/Y.  The vector of injections being 
operated on by the Y processor has also been reduced to a 
maximum dimension of “c”. The vector of maximum 
dimension “c” is passed from the Y processor to the X 
processor where one vector of dimension “c” is created by 
addition. The X processor then continues the forward 
operation on the X/Y area with the operation 
FORWARD(d:d+c-1). 

For the above case, the backward operation is started by 
the X processor which does a backward operation 
BACKWARD(d+c-1:d) on the X/Y area.  This produces the 
node voltages for the X/Y area. These node voltages are 
passed to the Y processor so that both processors can continue 
independently to produce node voltages for the X and Y areas. 
 The X/Y area voltages provide input for any elements located 
below row “a” in the modified local injection vector on the X 
processor.  The X/Y area voltages also provide input for any 
elements below row “b” in the modified local injection vector 
on the Y processor.  The backward operations are completed 
by a BACKWARD(a:1) operation on the X processor and a 
BACKWARD(b:1) operation on the Y processor. 

The above description of an example solution is focused on 
the division of the [G][v] = [In] solution between two 
processors.  Fortunately, the technique can be recursively 
applied to divide the solution between a multitude of 
processors.  Figure 4 illustrates the dissection of the X area 
into X and W areas and the Y area into Y and Z areas. The 
dissection illustrated in Figure 4 supports the use of 4 
processors. Of course, this nested dissection could be 
extended to 8 processors and beyond. This recursive 

bifurcation is referred to in the literature [2] as “spectral 
nested dissection”. 

 

 
Fig. 4. Product of Spectral Nested Dissection 

III.  HANDLING MULTIPLE EMBEDDED SUBNETWORKS 
Often the overall network conductance matrix [G] contains 

models that can be considered as subnetworks. The HVDC 
valve group model mentioned in the Introduction section of 
this paper is an example of such a subnetwork model. The 
model has N internal nodes and M perimeter nodes 
respectively associated with the diagonals of the A and D 
areas of the matrix in Figure 1. Figure 5 illustrates two 
instances of the lower triangle of the model overlay matrix 
[Gm] being connected into the lower triangle of a reduced-
dimension overall network conductance matrix [Gr] of 
dimension d. The reduction in dimension of matrix [Gr] exists 
because [Gr] does not contain the N internal nodes of either 
[Gm] matrix. 

 

 
Fig. 5. Representation of Embedded Subnetwork Triangular Matrices 



 
 

The content of the matrix [Gm] can change in every time-
step as the valves in the model switch between the ON and 
OFF states. Consequently, it is necessary to do a 
DECOMP(1:N) operation on each valve group processor as a 
first step in solving for all the node voltages.  When this 
DECOMP(1:N) operation is complete, each valve group 
processor sends the resulting MxM lower triangle G overlay 
to the network processor. After the valve group processor 
completes the DECOMP(1:N) operation, the processor 
conducts a FORWARD(1:N) operation on the injection vector 
for the valve group model which is of dimension P = N + M. 
When the FORWARD(1:N) operation is complete, the valve 
group processor sends the modified M lowest locations in the 
model injection vector to the network processor.  

The network processor receives the MxM lower triangle 
conductance overlay and the injection vector of dimension M 
from each valve group processor. The network processor adds 
the MxM conductance overlays onto the base matrix [Gr].  It 
also adds the M dimension valve group injection vectors into 
the d dimension network injection vector. The completion of 
these additions allow the network processor to do a 
DECOMP(1:d) operation followed by a FORWARD(1:d) 
operation. 

The network processor then begins the BACKWARD(d:1) 
operation to produce the network node voltages. The network 
processor sends the appropriate M valve group perimeter node 
voltages calculated as part of the BACKWARD(d:1) 
operation to each valve group processor. The 
BACKWARD(d:1) operation does not produce the N internal 
nodes voltages for each valve group. 

Each valve group processor places the M perimeter node 
voltages into the M bottom locations of the modified injection 
vector that was previously produced on the valve group 
processor by the FORWARD(1:N) operation.  The valve 
group model then solves for the N valve group internal node 
voltages by conducting a BACKWARD(N:1) operation. This 
completes the calculation of all the node voltages. 

It should be noted that Figure 5 illustrates the ordering of 
the M perimeter nodes in the matrix [Gr] as being the same as 
in the [Gm] matrix. However, this is not actually required. In 
fact, the M perimeter nodes in [Gr] do not even need to be 
contiguously located. It is also possible to connect embedded 
subnetwork triangular matrices [Gm] into the multi-processor 
matrix solutions shown in Figures 3b) and 4. 

IV.  DEMONSTRATION OF THE EMBEDDED SUBNETWORK 
TECHNIQUE 

Section III above describes the technique of embedding a 
subnetwork matrix [Gm] into an overall reduced dimension 
network matrix [Gr]. This section describes the practical use 
of the technique in implementing a 12 pulse HVDC valve 
group model that contains 10 interior nodes, 5 perimeter 

nodes and 17 switching elements. 
Figure 6 illustrates the icon for the 12 pulse HVDC valve 

group prepared for use in an RTDS ® real-time simulator. The 
10 internal nodes are labelled as R, P, AV1, BV1, CV1, M, 
AV2, BV2, CV2 and N. The 5 perimeter nodes are labelled as 
A, B, C, CT and AN.  Recently the model has been expanded 
to optionally support 4 windings on the 3 single-phase 
transformer to enable filters and reactive power support to be 
connected to the converter transformer. In that case, the model 
has 10 internal nodes and 8 external nodes and the resulting 
[Gm] matrix is of dimension 18. 

 
Fig. 6. 12-Pulse HVDC Valve Group Icon 

 
Figure 7a) and 7b) illustrates typical plots of DC current 

and rectifier valve 1 voltage for a simulation containing the 12 
pulse valve group model feeding a rated DC resistance and 
with firing delay of 0.5 radians. Figure 7a) illustrates curves 
for the case where there is no mutual inductance between the 
two 6 pulse valves groups, X12, X13 and X23 being 
respectively 0.1786, 0.1786 and 0.3572 per unit.  Figure 7b) 
illustrates curves for the case where there is mutual inductance 
between the two 6 pulse valve groups, X12, X13 and X23 
being respectively 0.1786, 0.1786 and 0.1786 per unit.  The 
valve voltage plot in Figure 7b) contains the 2 expected 
additional commutation notches per cycle which match those 
illustrated in the textbooks [6]. An particular, there is an 
additional upward directed notch early in the voltage wave 
and a downward directed notch late in the wave. 

The new model has a number of new features in addition to 
the ability to model 3 phase 4 winding transformers. One such 
feature is a user-specifiable forward voltage drop for the 
individual valves which is useful in properly modeling 
blocking and bypassing of 12 pulse groups in ultra high 
voltage (UHV) HVDC simulations.  

V.  CONCLUSIONS 
This paper has briefly reviewed the efforts of leading 

researchers [1][2][3] in the area of “Spectral Nested 



Dissection” (SND) techniques in effectively ordering large 
dimension symmetric positive definite matrices to facilitate 
parallel decomposition.  The applicability of these techniques 
to EMT simulation has also been briefly explained.  

 

 
Fig. 7a). Valve Voltage - With No Transformer Mutual Inductance 
 

 
Fig. 7b). Valve Voltage - With Transformer Mutual Inductance 

 
In addition to SND techniques, other techniques such as 

“Multiple-Minimum-Degree” (MMD) [4] and “Sparspak 
Automatic Nested Dissection” (AND) [5] may provide 
methods that can be employed in the EMT simulation area.  
Evaluating these alternative techniques is an area of future 
research. 

This paper also explains a practical approach for removing 
the calculations for subnetwork conductance matrices from 
the main network solution processor and for performing those 
calculations in parallel on separate embedded model 
processors. An implementation of those techniques is 
provided in the 12 pulse HVDC valve group model. 

The techniques explained in this paper have already 
enabled the real-time simulation of networks that require 
larger connected conductance matrices. It is expected that 
more research in this area can provide even greater benefits. 

VI.  APPENDIX 

The following C language code segments are a typical 
right-looking Cholesky decomposition and associated forward 
and backward operations using columns F to L inclusive of 
the symmetric positive definite dxd conductance matrix, [G]. 
In right-looking Cholesky factorization, the matrix is 
traversed by column from the left to the right with all columns 
to the right of the current column being updated immediately.  

The decomposition operation and the result therefrom 
include a typical modification to avoid division operations 
during the subsequent forward and backward operations. The 
vector [In] is converted from a nodal injection vector to a 
vector of node voltages by the combined effect of all of the 
forward and backward operations. 

For purposes of notation, we define an operation 
DECOMP(F:L) illustrated in the following C code as the in-
place Cholesky decomposition operations using multiplication 
factors from columns F to L inclusive of the lower triangle of 
a dxd symmetric positive definite matrix [G]. If there are any 
columns to the left of column F, then operations for those 
columns must be completed in advance of the DECOMP(F:L) 
 operation. 

 
for(j=F; j<=L; j++) 

  { 
    /* modify the diagonal of column j */ 
 
  H         = 1.0/sqrt( G[j][j] ); 

    G[j][j]   = H; 
 
  /* modify the column  */ 
  /* below the diagonal */ 

 
  for(i=j+1; i<=d; i++) 

    { 
      G[i][j] = H * G[i][j]; 
    } 
 
  /* modify locations to      */ 
  /* the right of the column  */ 

 
  for(i=j+1; i<=d; i++) 

    { 
      H = G[i][j]; 
 
    for(k=i; k<=d; k++) 

      { 
        G[k][i] -= H * G[k][j]; 
      } 
     } 
   } 

 
For purposes of notation, we define an operation 



FORWARD(F:L) illustrated in the following C code as the 
forward operations on the [In] vector using columns F to L 
inclusive of the dxd [G] matrix result that was produced by 
the DECOMP(F:L) operation. If there are any columns to the 
left of column F, then operations for those columns must be 
completed in advance of the FORWARD(F:L)  operation. 

 
  for(j=F; j<=L; j++) 
  { 
    /* forward operation for column j */ 
 
    H        = In[j] * G[j][j]; 
    In[j]    = H; 
 
    for(i=j+1; i<=d; i++) 
    { 
      In[i] -= H * G[i][j]; 
    } 
  } 

 
For purposes of notation, we define an operation 
BACKWARD(L:F) illustrated in the following C code as the 
backward operations on the modified [In] vector using 
columns L to F inclusive of the dxd [G] matrix result that was 
produced by the DECOMP(F:L) operation. If there are any 
columns to the right of column L, then operations for those 
columns must be completed in advance of the 
BACKWARD(L:F) operation. 
 
  for(j=L; j>=F; j--) 
  { 
    /* backward operation for column j */ 
 
    H     = In[j]; 
 
    for(i=d; i>j; i--) 
    { 
      H  -= G[i][j] * In[i]; 
    } 
 
    In[j] = H * G[j][j]; 
  } 
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