

Multi-Processor Cholesky Decomposition of

Conductance Matrices

Trevor Maguire

1Abstract – Electromagnetic Transients (EMT) Simulation
based on the Dommel algorithm requires a solution for the node
voltage vector [v] in the equation [G][v] = [In] in each time-step.
In general, [G] is a symmetric positive definite conductance
matrix with fixed sparsity fill, but the content of the filled
locations changes with switching. [In] is the vector of nodal
injections. Accordingly, one approach for solving for [v] in real-
time simulation involves sparse decomposition of [G] in each
time-step using the Cholesky method followed by sparse forward
and backward operations on [In] to produce [v] on a single
processor core.

Initially, the decomposition, forward and backward
operations appear to be poorly suited for parallel computation
because of the serial nature of the required operations.

However, based on work in other areas of science, this paper
describes a practical method for using multiple processor cores
for solving the overall nodal equations [G][v] = [In] even when all
nodes represented in the sparse [G] are connected by
conductances.

Keywords: Electromagnetic Transients Simulation, Cholesky
Decomposition, Parallel.

I. INTRODUCTION
Electromagnetic Transients (EMT) Simulation based on

the Dommel algorithm requires a solution for the node voltage
vector [v] in the equation [G][v] = [In] in each time-step. In
general, [G] is a symmetric positive definite conductance
matrix with fixed sparsity fill, but the content of the filled
locations changes with switching. [In] is the vector of nodal
injections. Accordingly, one approach for solving for [v] in
real-time simulation involves sparse decomposition of [G] in
each time-step using the Cholesky method, followed by sparse
forward and backward operations on [In] to produce [v] on a
single processor core.

Two factors indicate toward the future use of multiple
processor cores for the decomposition of the connected sparse
matrices [G] used in EMT simulation.

First, the study of smart grid technology often requires the

1

T.L. Maguire is with RTDS Technologies Inc., Winnipeg, Canada
(e-mail: tlm@rtds.com).

Paper submitted to the International Conference on Power Systems Transients
(IPST2011) in Delft, the Netherlands June 14-17, 2011

simulation of lower voltage portions of the grid where
transmission lines are shorter. In such portions of the grid, the
travel times of the transmission lines can often be less than a
typical time-step which precludes representing the lines with
traveling wave line models. Without traveling wave line
models, it is less likely that the overall conductance matrix [G]
can be replaced by several smaller conductance matrices.
Therefore, there is a trend toward modeling networks which
require larger connected conductance matrices [G].

Second, processor clock speeds are no longer increasing
significantly from year to year.

Consequently, it is expected that the use of multiple
processor cores will be required in future real-time EMT
simulation in order to decompose and do the forward and
backward operations for the ever larger conductance matrices
while continuing to use existing or smaller time-steps.

In other areas of science, sparse positive definite
symmetric matrices with dimensions in the 10s of thousands
[1] are partitioned so that parallel Cholesky decomposition
can be applied using 10s or 100s of processor cores. This
paper describes initial efforts to adapt the methods used in
these other areas to provide parallel decomposition of
conductance matrices in EMT simulation.

As one adaptation of the methods, the present paper
describes a practical method for using multiple processor
cores for solving the overall nodal equations when the
network contains multiple embedded subnetworks, all
connected by conductances. In this adaptation, one processor
core is used to perform calculations related to each
subnetwork and another processor core performs calculations
related to the overall network matrix in which the
subnetworks are embedded.

An example of such a subnetwork, described in this paper,
is a 12-pulse HVDC valve group model which includes 12
valves, three three-winding transformers, two bypass
switches, two disconnects, a fault branch and a reactor. The
model contains (N=) 10 inner nodes, (M=) 5 perimeter nodes
and 17 switches. The N inner nodes are connected by
conductances only to other inner nodes and/or to the M
perimeter nodes.

The conductance matrix for the example valve group
model is shown in Figure 1. The “A” area of the matrix is
associated with the 10 inner nodes while the “D” area is
associated with the 5 perimeter nodes.

Fig. 1. Conductance Matrix of the HVDC Valve Group Model

It is well known that the dimension of the overall network

conductance matrix [G] can be reduced in dimension by
elimination of the N inner nodes of each subnetwork from the
overall network conductance matrix [G]. The elimination
operation requires the preparation of an overlay conductance
matrix [Go] of dimension MxM for addition into the reduced
dimension overall network matrix [Gr] in each time-step. The
computation of the overlay matrix [Go] is according to (1).

 [Go] = [D] – [C][A]-1[B] (1)

In theory, the computation of [Go] using (1) could be

performed in each small time-step by a subnetwork processor
core and then sent to the main network processor. However,
the inversion of the eliminated node area “A” in Figure 1 is
computationally intensive and it is better to avoid the matrix
inversion in real-time simulation.

Also, in theory, the overlay matrix [Go], to be added to the
perimeter node area of the reduced overall network matrix
[Gr], could be prepared in advance of the real-time simulation
for each possible combination of switch states. However,
computing 217=131,072 matrices in advance of the simulation
and storing them for quick access in real-time EMT
simulation is not a practical approach and does not support the
use of branches with conductance values that can change over
a continuous range.

The difficulties associated with using the [Go] matrix
calculated using (1) led to a search for other available
techniques. Fortunately, the large dimensions of the matrices
in other areas of science [1] makes it imperative in those areas
that multiple processors must be brought to bear on the
solution of equations of form similar to [G][v] = [In]. This
paper describes initial efforts to adapt the experience of other
areas to the EMT simulation problem.

In order to avoid using an excessively large number of
equations in this paper, the Appendix contains typical “C”
language code for a right-looking Cholesky decomposition

and associated forward and backward operations. These
operations involve using columns F to L inclusive of the
lower triangle of a symmetric positive definite conductance
matrix [G] and a nodal injection vector [In]. The operations
described in the Appendix are referred to in this paper by
notation: DECOMP(F:L), FORWARD(F:L) and
BACKWARD(L:F).

As an example of the use of the notation, when the
equation [G][v] = [In] is solved on one processor, the
sequence of operations required is a DECOMP(1:d) operation
followed by a FORWARD(1:d) operation and a
BACKWARD(d:1) operation where “d” is the dimension of
[G]. This converts the nodal injection vector [In] into the node
voltage vector [v].

II. BACKGROUND
Fortunately, the symmetric positive definite matrix

equations solved in other areas of science [1][2] are relatively
large compared to those typically used in power system EMT
simulations. Such other matrices [1] can be of dimensions in
excess of several 10s of thousands. This has required the
development of techniques in those scientific areas which
enable a single large connected positive definite symmetric
matrix to be decomposed by 10s or 100s of processors acting
in parallel. The present paper cannot begin to catalog the
numerous techniques that have been developed. However, the
“spectral nested dissection” [2] technique is reviewed here
because of it's apparent applicability to our EMT problem.

The “spectral nested dissection” [2] is one example of the
“nested dissection” techniques that recursively divide the
nodes of the matrix into groups in order to determine a good
parallel ordering of the matrix such that it can be factored
efficiently by parallel processors.

This review of the “spectral nested dissection” technique
begins with the description of a constituent “spectral
dissection” [2] technique which divides the solution of [G][v]
= [In] between two processors. In this technique, a set of
nodes is determined, the removal of which divides the overall
matrix [G] into two disconnected parts. In the terminology of
graph theory, the set of nodes constitute a “vertex separator”.
A good “vertex separator” is one that has a small number of
nodes and separates the remaining nodes into two groups of
approximately the same size.

In spectral dissection [2], a “Laplacian” matrix [Q] is
prepared corresponding to the particular symmetric positive
definite matrix [G] being considered. The matrix [Q] has the
same dimension as the corresponding [G]. With respect to
content, the matrix [Q] has diagonal elements of value “n”
where “n” is equal to the number of non-zero off-diagonal
elements in the particular corresponding row (or column) of
[G]. The matrix [Q] also has off-diagonal elements of value -1
wherever the corresponding [G] matrix has an off-diagonal
element that is non-zero. The remaining elements of [Q] are
equal to zero. Assuming that all nodes in the matrix [G] are

connected together through conductance, the first eigenvalue
of [Q] is 0.0 and the remaining eigenvalues are positive. The
smallest positive eigenvalue has a corresponding eigenvector
referred to as the “Fiedler” vector [1]. The median value of
the elements of the Fiedler vector can readily be found. Also,
each node number in the matrices [Q] and [G] has a
corresponding element in the Fiedler vector. The separation
algorithm [1] proceeds by identifying a group of nodes X'
which have corresponding values in the Fiedler vector which
are less than the median value of the Fiedler vector.
Remaining nodes, not in the group X', are placed in another
group, Y'. If several elements of the Fiedler vector are equal to
the median, corresponding nodes are shifted from one group
to the other group until the number of nodes in each group
differs by, at most, 1. The [G] matrix is thus partitioned into
two groups of nodes, X' and Y'. The algorithm proceeds by
finding a subset of X' and a subset of Y' respectively referred
to herein as X” and Y”. For a node in X' to be in the subset
X”, the node in X' must share a non-zero off-diagonal entry (a
g connection) in the [G] matrix with a node in the Y' node
group. Nodes in the Y' group gain membership in the Y”
subset in a similar manner. In graph theory terminology, the
nodes X” and Y” (vertices) and the g connections (edges)
form a bipartite graph. A typical bipartite graph is shown in
Figure 2 with the X” node (vertex) group on the left and the
Y” node (vertex) group on the right joined by g connections
(edges) illustrated as lines. Either the X” group or the Y”
group can be used as a “vertex separator”, the removal of
which partitions [G]. However, often there exists a vertex
separator with some nodes in X” and some nodes in Y” which
contains fewer nodes than either the X” group or the Y”
group. This minimum size vertex separator is referred to as
the “minimum cover” of a bipartite graph and is found in
conjunction with finding the “maximum matching” of the
bipartite graph [1].

Fig. 2. A Typical Bipartite Graph

In Figure 3a), the vertex separator nodes, re-ordered into

the largest node number locations of the matrix are illustrated
as the X/Y portion of the matrix. The two separated node
groups, X and Y, are associated with the portion of the matrix
marked respectively as X and Y that are located to the left of
the X/Y portion. The nodes in each of the separated groups
are re-numbered so as to be consecutively placed. The
separated X and Y node groups are only connected through
the vertex separator nodes X/Y. This is illustrated in Figure
3a) by the absence of matrix entries in the portion of the
matrix marked “nil”. Due to the lack of connection in the
matrix to the left of the separator nodes, it is possible to think
of the portion of the matrix to the left of the separator nodes as
2 parallel matrices as illustrated in Figure 3b).

Fig. 3a).Normal Planar Representation of a Matrix from Spectral

Dissection

Fig. 3b). Parallel Representation of a Matrix from Spectral

Dissection

Consequently, if there are “a” nodes in the separated node

group X as shown in Figure 3b), then one processor core (X
processor) can be used to perform a right-looking Cholesky
decomposition on X for the “a” columns in X according to the
decomposition operation, DECOMP(1:a) described in the
Appendix. Simultaneously, if there are “b” nodes in the
separated node group Y, then another processor core (Y

processor) can be used in parallel to perform a right-looking
Cholesky decomposition on the Y area illustrated in Figure
3b). Each of the processors can keep track of the net change
on locations in X/Y due to subtractions that occur in the right-
looking DECOMP(1:a) and DECOMP(1:b) operations.
Subsequently only one processor proceeds to do the
decomposition operation on the X/Y area which contains “c”
columns. If the X processor will do the decomposition for the
X/Y area, then the Y processor sends a list of adjustments for
the X/Y area to the X processor. The X processor makes the
listed adjustments to the X/Y area. If we number the first
column of X/Y as “d”, then the X processor does the
decomposition operation DECOMP(d:d+c-1) on the X/Y area.

To obtain a solution for [G][v] = [In], the decomposition
operation must be followed by forward and backward
operations. Fortunately, these can also be done in parallel for
the X and Y areas.

For the X area, a forward operation FORWARD(1:a) is
done on the X processor as described in the Appendix.
Similarly, for the Y area, a forward operation
FORWARD(1:b) is done on the Y processor. When the X
processor completes the FORWARD(1:a) operation, the
vector of injections being operated on by the X processor has
been reduced to a maximum dimension of “c”, associated with
the number of columns in X/Y. The vector of injections being
operated on by the Y processor has also been reduced to a
maximum dimension of “c”. The vector of maximum
dimension “c” is passed from the Y processor to the X
processor where one vector of dimension “c” is created by
addition. The X processor then continues the forward
operation on the X/Y area with the operation
FORWARD(d:d+c-1).

For the above case, the backward operation is started by
the X processor which does a backward operation
BACKWARD(d+c-1:d) on the X/Y area. This produces the
node voltages for the X/Y area. These node voltages are
passed to the Y processor so that both processors can continue
independently to produce node voltages for the X and Y areas.
 The X/Y area voltages provide input for any elements located
below row “a” in the modified local injection vector on the X
processor. The X/Y area voltages also provide input for any
elements below row “b” in the modified local injection vector
on the Y processor. The backward operations are completed
by a BACKWARD(a:1) operation on the X processor and a
BACKWARD(b:1) operation on the Y processor.

The above description of an example solution is focused on
the division of the [G][v] = [In] solution between two
processors. Fortunately, the technique can be recursively
applied to divide the solution between a multitude of
processors. Figure 4 illustrates the dissection of the X area
into X and W areas and the Y area into Y and Z areas. The
dissection illustrated in Figure 4 supports the use of 4
processors. Of course, this nested dissection could be
extended to 8 processors and beyond. This recursive

bifurcation is referred to in the literature [2] as “spectral
nested dissection”.

Fig. 4. Product of Spectral Nested Dissection

III. HANDLING MULTIPLE EMBEDDED SUBNETWORKS
Often the overall network conductance matrix [G] contains

models that can be considered as subnetworks. The HVDC
valve group model mentioned in the Introduction section of
this paper is an example of such a subnetwork model. The
model has N internal nodes and M perimeter nodes
respectively associated with the diagonals of the A and D
areas of the matrix in Figure 1. Figure 5 illustrates two
instances of the lower triangle of the model overlay matrix
[Gm] being connected into the lower triangle of a reduced-
dimension overall network conductance matrix [Gr] of
dimension d. The reduction in dimension of matrix [Gr] exists
because [Gr] does not contain the N internal nodes of either
[Gm] matrix.

Fig. 5. Representation of Embedded Subnetwork Triangular Matrices

The content of the matrix [Gm] can change in every time-
step as the valves in the model switch between the ON and
OFF states. Consequently, it is necessary to do a
DECOMP(1:N) operation on each valve group processor as a
first step in solving for all the node voltages. When this
DECOMP(1:N) operation is complete, each valve group
processor sends the resulting MxM lower triangle G overlay
to the network processor. After the valve group processor
completes the DECOMP(1:N) operation, the processor
conducts a FORWARD(1:N) operation on the injection vector
for the valve group model which is of dimension P = N + M.
When the FORWARD(1:N) operation is complete, the valve
group processor sends the modified M lowest locations in the
model injection vector to the network processor.

The network processor receives the MxM lower triangle
conductance overlay and the injection vector of dimension M
from each valve group processor. The network processor adds
the MxM conductance overlays onto the base matrix [Gr]. It
also adds the M dimension valve group injection vectors into
the d dimension network injection vector. The completion of
these additions allow the network processor to do a
DECOMP(1:d) operation followed by a FORWARD(1:d)
operation.

The network processor then begins the BACKWARD(d:1)
operation to produce the network node voltages. The network
processor sends the appropriate M valve group perimeter node
voltages calculated as part of the BACKWARD(d:1)
operation to each valve group processor. The
BACKWARD(d:1) operation does not produce the N internal
nodes voltages for each valve group.

Each valve group processor places the M perimeter node
voltages into the M bottom locations of the modified injection
vector that was previously produced on the valve group
processor by the FORWARD(1:N) operation. The valve
group model then solves for the N valve group internal node
voltages by conducting a BACKWARD(N:1) operation. This
completes the calculation of all the node voltages.

It should be noted that Figure 5 illustrates the ordering of
the M perimeter nodes in the matrix [Gr] as being the same as
in the [Gm] matrix. However, this is not actually required. In
fact, the M perimeter nodes in [Gr] do not even need to be
contiguously located. It is also possible to connect embedded
subnetwork triangular matrices [Gm] into the multi-processor
matrix solutions shown in Figures 3b) and 4.

IV. DEMONSTRATION OF THE EMBEDDED SUBNETWORK
TECHNIQUE

Section III above describes the technique of embedding a
subnetwork matrix [Gm] into an overall reduced dimension
network matrix [Gr]. This section describes the practical use
of the technique in implementing a 12 pulse HVDC valve
group model that contains 10 interior nodes, 5 perimeter

nodes and 17 switching elements.
Figure 6 illustrates the icon for the 12 pulse HVDC valve

group prepared for use in an RTDS ® real-time simulator. The
10 internal nodes are labelled as R, P, AV1, BV1, CV1, M,
AV2, BV2, CV2 and N. The 5 perimeter nodes are labelled as
A, B, C, CT and AN. Recently the model has been expanded
to optionally support 4 windings on the 3 single-phase
transformer to enable filters and reactive power support to be
connected to the converter transformer. In that case, the model
has 10 internal nodes and 8 external nodes and the resulting
[Gm] matrix is of dimension 18.

Fig. 6. 12-Pulse HVDC Valve Group Icon

Figure 7a) and 7b) illustrates typical plots of DC current

and rectifier valve 1 voltage for a simulation containing the 12
pulse valve group model feeding a rated DC resistance and
with firing delay of 0.5 radians. Figure 7a) illustrates curves
for the case where there is no mutual inductance between the
two 6 pulse valves groups, X12, X13 and X23 being
respectively 0.1786, 0.1786 and 0.3572 per unit. Figure 7b)
illustrates curves for the case where there is mutual inductance
between the two 6 pulse valve groups, X12, X13 and X23
being respectively 0.1786, 0.1786 and 0.1786 per unit. The
valve voltage plot in Figure 7b) contains the 2 expected
additional commutation notches per cycle which match those
illustrated in the textbooks [6]. An particular, there is an
additional upward directed notch early in the voltage wave
and a downward directed notch late in the wave.

The new model has a number of new features in addition to
the ability to model 3 phase 4 winding transformers. One such
feature is a user-specifiable forward voltage drop for the
individual valves which is useful in properly modeling
blocking and bypassing of 12 pulse groups in ultra high
voltage (UHV) HVDC simulations.

V. CONCLUSIONS
This paper has briefly reviewed the efforts of leading

researchers [1][2][3] in the area of “Spectral Nested

Dissection” (SND) techniques in effectively ordering large
dimension symmetric positive definite matrices to facilitate
parallel decomposition. The applicability of these techniques
to EMT simulation has also been briefly explained.

Fig. 7a). Valve Voltage - With No Transformer Mutual Inductance

Fig. 7b). Valve Voltage - With Transformer Mutual Inductance

In addition to SND techniques, other techniques such as

“Multiple-Minimum-Degree” (MMD) [4] and “Sparspak
Automatic Nested Dissection” (AND) [5] may provide
methods that can be employed in the EMT simulation area.
Evaluating these alternative techniques is an area of future
research.

This paper also explains a practical approach for removing
the calculations for subnetwork conductance matrices from
the main network solution processor and for performing those
calculations in parallel on separate embedded model
processors. An implementation of those techniques is
provided in the 12 pulse HVDC valve group model.

The techniques explained in this paper have already
enabled the real-time simulation of networks that require
larger connected conductance matrices. It is expected that
more research in this area can provide even greater benefits.

VI. APPENDIX

The following C language code segments are a typical
right-looking Cholesky decomposition and associated forward
and backward operations using columns F to L inclusive of
the symmetric positive definite dxd conductance matrix, [G].
In right-looking Cholesky factorization, the matrix is
traversed by column from the left to the right with all columns
to the right of the current column being updated immediately.

The decomposition operation and the result therefrom
include a typical modification to avoid division operations
during the subsequent forward and backward operations. The
vector [In] is converted from a nodal injection vector to a
vector of node voltages by the combined effect of all of the
forward and backward operations.

For purposes of notation, we define an operation
DECOMP(F:L) illustrated in the following C code as the in-
place Cholesky decomposition operations using multiplication
factors from columns F to L inclusive of the lower triangle of
a dxd symmetric positive definite matrix [G]. If there are any
columns to the left of column F, then operations for those
columns must be completed in advance of the DECOMP(F:L)
 operation.

for(j=F; j<=L; j++)

 {
 /* modify the diagonal of column j */

 H = 1.0/sqrt(G[j][j]);

 G[j][j] = H;

 /* modify the column */
 /* below the diagonal */

 for(i=j+1; i<=d; i++)

 {
 G[i][j] = H * G[i][j];
 }

 /* modify locations to */
 /* the right of the column */

 for(i=j+1; i<=d; i++)

 {
 H = G[i][j];

 for(k=i; k<=d; k++)

 {
 G[k][i] -= H * G[k][j];
 }
 }
 }

For purposes of notation, we define an operation

FORWARD(F:L) illustrated in the following C code as the
forward operations on the [In] vector using columns F to L
inclusive of the dxd [G] matrix result that was produced by
the DECOMP(F:L) operation. If there are any columns to the
left of column F, then operations for those columns must be
completed in advance of the FORWARD(F:L) operation.

 for(j=F; j<=L; j++)
 {
 /* forward operation for column j */

 H = In[j] * G[j][j];
 In[j] = H;

 for(i=j+1; i<=d; i++)
 {
 In[i] -= H * G[i][j];
 }
 }

For purposes of notation, we define an operation
BACKWARD(L:F) illustrated in the following C code as the
backward operations on the modified [In] vector using
columns L to F inclusive of the dxd [G] matrix result that was
produced by the DECOMP(F:L) operation. If there are any
columns to the right of column L, then operations for those
columns must be completed in advance of the
BACKWARD(L:F) operation.

 for(j=L; j>=F; j--)
 {
 /* backward operation for column j */

 H = In[j];

 for(i=d; i>j; i--)
 {
 H -= G[i][j] * In[i];
 }

 In[j] = H * G[j][j];
 }

VII. REFERENCES
[1] A. Pothen, H.D. Simon, and K.-P. Liou, "Partitioning

sparse matrices with eigenvectors of graphs", SIAM J.
Matrix Anal. Appl., 11 (1990), pp. 430-452.

Available (spaces in URL are underscores):
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970011
963_1997016998.pdf
[2] A. Pothen, H.D. Simon, and L. Wang, “Spectral nested

dissection”, Tech. Rep. CS-92-01, Computer Science,
Pennsylvania State University, University Park, PA,
1992.

Available:
http://www.nersc.gov/homes/simon/Papers/NASA/rnr-92-

003.pdf
[3] Alex Pothen, Edward Rothberg, Horst Simon, and Lie

Wang, “Parallel Sparse Cholesky Factorization with
Spectral Nested Dissection Ordering”, Report RNR-94-
011, May 1994, NAS Systems Division, Applied
Research Branch, NASA Ames Research Center

Available (spaces in URL are underscores):
http://reference.kfupm.edu.sa/content/p/a/parallel_sparse_chol
esky_factorization_w_1540750.pdf
[4] J. W. H. Liu, “Modification of the minimum degree

algorithm by multiple elimination”, ACM Trans. on
Math. Software, 11 (1985), pp. 141-153.

[5] E. C. H. Chu, A. George, J. W. H. Liu, and E. G. Y. Ng,
“User's guide for Sparspak-A: Waterloo sparse linear
equations package”, Tech. Rep. CS-84-36, Computer
Science, University of Waterloo, Ontario, Canada, 1989.

[6] Colin Adamson and N.G. Hingorani, High Voltage Direct
Current Power Transmission, London: Garraway, 1960,
p. 44.

VIII. BIOGRAPHIES

Trevor Maguire graduated from the University of
Manitoba with B.Sc.EE, LL.B., M.Sc.EE and Ph.D.
degrees in 1975, 1979, 1986, and 1992 respectively.
Relevant employment experience includes time with
Manitoba Hydro (1975-76), Manitoba HVDC
Research Centre (1986-1994), and RTDS
Technologies, Inc. (1994-present). He is a founding
principal of RTDS Technologies, Inc. with a special
interest in real time simulation model development
and also real-time simulation digital hardware
development. He participated in creating the world’s
first commercial real-time digital power system
simulator.

