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 Abstract-- This work presents the application of a recently 

developed time domain multiconductor line model for the 
representation of a transformer winding for high frequency 
transients, including the frequency dependence of the winding’s 
electrical parameters. The model is based on the method of 
characteristics but, in contrast to its conventional implementa-
tion, it does not require of any space discretization. This is 
particularly useful to reduce the computer burden related to the 
simulation of the transient response of a transformer winding 
consisting of a large number of turns.  Besides, since the final 
representation of the model consists of a nodal form, the 
inclusion of the model in a transient simulation program is 
straightforward. The winding model obtained in this work is 
applied for the computation of transient overvoltages and 
dielectric stresses due to the injection of a fast front impulse. The 
results are compared to those from a frequency domain method. 
The parameters required by the model are computed by means 
of FEM simulations and analytical expressions. 
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I.  INTRODUCTION 

NE of the most important standard tests for the design 
and assessment of power transformers is the impulse test, 

which defines for most cases the highest dielectric stress that 
the transformer will suffer once in operation. Therefore, the 
insulation system is designed in general to withstand this test. 
However, to date commercial programs for the simulation of 
transient response of electrical components and networks 
(such as EMTP, Simulink, PSpice, etc.) do not include models 
able to predict the response of a transformer winding to an 
impulse test.  

Several winding models have been proposed in the 
literature to analyze the electromagnetic transients produced 
by the propagation of fast front impulses. Lumped and 
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distributed parameter representations have been applied (see 
for instance [1]-[4]), but it has been shown that lumped 
parameter representations are only valid for transients 
containing frequencies up to around 1 MHz, while distributed 
parameter representations can reproduce transients well above 
such frequencies [4]. A winding representation based on a 
multiconductor transmission line model has demonstrated 
accurate results when compared to experimental measure-
ments, given its ability to consider the inductive and 
capacitive coupling between turns, as well as the wave 
propagation along the winding. However, this model is 
usually described in the frequency domain, which precludes 
its direct implementation in time domain simulation programs. 
The representation of this model in time domain by means of 
the method of characteristics has also been reported in the past 
[5]. Still, this method requires the discretization of each 
winding turn in a number of segments and, since a detailed 
winding model can consist of hundreds or thousands of turns, 
the resulting system can be extremely large and, in 
consequence, the computer times can be excessive. 

This work presents the application of a recently developed 
time domain multiconductor line model [6] for the 
representation of a transformer winding for high frequency 
transients, including the frequency dependence of the 
winding’s electrical parameters. The model is based on the 
method of characteristics [7] but, in contrast to its 
conventional implementation, it does not require of any space 
discretization. This is particularly useful to reduce the 
computer burden related to simulate the transient response of a 
transformer winding consisting of a large number of turns.  
Besides, since the final representation of the model consists of 
a nodal form, the inclusion of the model in a transient 
simulation program is straightforward. 

The winding model obtained in this work is applied for the 
computation of transient overvoltages and dielectric stresses 
due to the injection of a fast front impulse. The results are 
compared to those from a frequency domain method (the 
numerical Laplace transform [8]). The parameters required by 
the model are computed by means of finite element method 
(FEM) simulations and analytical expressions. 

II.  MTL MODEL WITH FREQUENCY DEPENDENT ELECTRICAL 

PARAMETERS 

The telegrapher equations in time domain for multiconduc-
tor transmission lines with frequency dependent electrical 
parameters are defined as [9]: 
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where v and i are the vectors of voltages and currents 
propagating along the line (z is the propagation axis); L0, C, r´ 
and g´ are the matrices of geometrical inductances, 
capacitances, series transient resistances and shunt transient 
conductances of the line, respectively. In (1a) the convolution 
term is solved using a recursive scheme and the transient 
resistance is fitted with a sum of rational functions of the 
form: 
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where R'(s) is the frequency domain image of r'(t), N is the 
order of the approximation, Ki is the i-th residues matrix and 
pi the corresponding pole, K0 is the residues matrix at s = 0 
and K is the residues matrix at s = . Considering that the 
shunt conductances matrix G does not depend on frequency 
the telegrapher’s equations become of the following form: 
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where D, Rx and Ψ are defined as: 
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Multiplying (3a) and (3b) by 1D  and 1C , respectively, gives 

the following system: 

 0
z t

 
   

 
U A U BU W  (5) 

where  

 
1

1

0

0





 
  
 

C
A

D
,  

1

1

0

0 x





 
  
 

C G
B

D R
 (6a),(6b) 

 
 

  
 

V
U

I
 ,  1

0


 
  
 

W
D Ψ

 (6c),(6d) 

 

Diagonalization of  products DC and CD are defined by: 
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where VT and IT are the modal matrices of voltages and 

currents respectively. Besides, modal electrical parameters can 
be expressed as follows: 
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The characteristic impedance and admittance matrices are 
given by:  
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Moreover, from the diagonalization of A the propagation 
velocities are obtained: 
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where  
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The left (ML) and right (MR) eigenvectors of A are defined 
as 
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Eq. (5) is left-multiplied by ML and, knowing that along 
the characteristics 
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the following system in modal domain is obtained: 
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Equations (14) are an Ordinary Differential Equations 
system that represents the Partial Differential Equations 
system given by (1a) and (1b). The central finite differences 
method is used to integrate (14). The values at the sending and 
receiving ends are approximated using the values at a travel 
time back. This approach, conversely to the conventional 
Method of Characteristics, does not require of any spatial 
discretization. After further algebraic manipulation a dual 
Norton model for the transmission line in phase domain is 
obtained. This model can be included into any simulation 
program based on the Nodal or the Modified Nodal Method. 
Further explanation of this modeling approach can be found in 
[7]. 

III.  ZIG-ZAG CONNECTION FOR WINDING MODEL 

Wave propagation phenomena along the winding can only 
be reproduced accurately with a distributed parameter model. 
However, the need to consider the turn-to-turn inductances 
can be a serious shortcoming. A model based on the multi-
conductor transmission line theory, initially proposed by 
Rabins [10] and developed for electrical machines by 
Guardado et al. [11], has been used successfully to account for 
the mutual inductance between turns in a distributed 
parameter model for transformer windings (see for instance 
[1], [2]). The model is based on a zig-zag connection of the 
different conductors, each of them representing a winding 
section (disc or turn) of the complete winding, as shown in 
Fig. 1. To preserve continuity, the end of each conductor is 
topologically connected to the beginning of the next 
conductor, resulting in a zig-zag connection. The winding 
model is obtained from the telegrapher equations of a 
multiconductor transmission line, so that it can be solved 
using the approach described in section II. 

In Fig. 1, the equivalent impedance Zeq connected at the 
end of the N-th element can be used to represent the remaining 
part of the winding, when only a section of the winding needs 
to be modeled in detail. Zeq can also represent the neutral 
impedance.  

 

IV.  DETERMINATION OF WINDING PARAMETERS 

Computation of parameters for high-frequency transformer 
models is based on similar approaches from those applied for 
low- and mid-frequency models. They can be classified in 
three: (1) the application of reduced scope expressions 
obtained from simplified geometries or empirical equations; 
(2) direct experimental determination of the parameter through 
laboratory tests; (3) electromagnetic field simulations. [12] 

Regardless of the model employed for the simulation of the 
transformer response, inductive, capacitive and loss 
components of the model are required to accurately describe 
the behaviour of the winding at high frequencies.  

The flux penetration into the core is usually neglected for 
very fast transients assuming that the core acts as a flux 
barrier. [13]  

 

A.  Capacitance 

The most common approach to compute the winding 
capacitances is based on the well-known formula for parallel 
plates. However, this method neglects fringe effects. A more 
general and accurate calculation can be obtained from 
electrostatic field simulations. In this work, the finite element 
method (FEM) is used for this purpose, considering a 2D 
axial-symmetric arrangement, as shown in Fig. 2. Self and 
mutual capacitances are obtained using the electrostatic 
energy method. Further explanation of this computation 
approach can be found in [3]. 
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Fig. 1 Multiconductor transmission line model for the transformer winding 
[12] 
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Fig.2. 2D axial-symmetric FEM model of the transformer winding for 
electrostatic simulations.  
 

Assuming that the winding has N layers and n turns per 
layer, the following capacitive values need to be computed: 

Cs,o Self capacitance of any turn at the outer layer (N) 
Cs,i Self capacitance of any turn at the inner layer (i) 
Cs,m Self capacitance of any turn at any interior layer (2, 

… N-1) 
Cit,o Mutual capacitance between any two adjacent turns at 

the outer layer (N) 
Cit,i Mutual capacitance between any two adjacent turns at 

the inner layer (i) 
Cit,m Mutual capacitance between any two adjacent turns at 

any interior layer (2, … N-1) 
CiL,o  

 
Mutual capacitance between the i-th turn at the outer 
layer and the i-th turn at the following interior layer 

CiL,m Mutual capacitance between the i-th turns of any 2 
interior layers 

B.  Inductance 

An expression used extensively to compute mutual 
inductances is the exact formula derived by Maxwell for two 
thin wire coaxial loops [14]. This has been extended by Lyle 
to compute the mutual inductances between winding turns or 
group of turns [15], [16]. Analytical expressions to compute 
the self-inductance of a circular coil have been defined by 
Grover [17] and Gray [18]. However, all these formulations 
neglect the magnetic shielding effect of the core at high 
frequencies. 

Similarly to the capacitance matrix, the inductance matrix 
can be computed directly from FEM analysis using the energy 
method to obtain more accurate results for realistic 
arrangements [19]. Alternatively, the geometric inductance 
matrix can be obtained directly from the inverse of the 
capacitive matrix computed from FEM simulations: 

 1
0  L C  (15) 

where μ and  are the permeability and permittivity of the 
surrounding medium.  

C.  Losses 

Both series and shunt elements of the windings at high 

frequencies are frequency dependent.  
Expressions for the conductor and core losses at high 

frequencies are based on the concept of the complex flux 
penetration depth in the windings and in the core. In this 
work, only conductor losses due to skin and proximity effects 
are considered, which is acceptable for very fast transients. 
These are computed from the following expression [2]: 
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where d is the distance between layers,  is the angular 
frequency, c is the conductivity of the winding conductor and 
µc is its permeability. According to the Laplace transform of 
(1a), the transient resistances matrix is related to the conductor 
losses matrix by / .s R R   

At very high-frequency, the conductance representing the 
capacitive loss in the winding’s dielectric also depends on 
frequency. The capacitive loss in the insulation material can 
be computed directly from the capacitance matrix making use 
of the loss factor of the winding insulation, tan, which is 
obtained from the concept of complex permittivity. Capacitive 
losses are a linear function of frequency; additionally, it has 
been observed that the loss factor in oil treated cellulose 
papers is also frequency dependent [4]. These losses are 
included in this work in the form of a shunt conductance 
matrix given by 

  CG  tan  (17) 

V.  TEST CASE 

A small prototype (200 turns: 4 layers, 50 turns each) of a 
transformer winding with dielectric distances designed for a 
voltage level of 13.2 kV (BIL = 95 kV) is considered. Its main 
geometrical data is listed in Table I.  

The transient response of the winding is analyzed by means 
of the injection of a linearly rising and decaying waveform (60 
ηs of front time and 25 μs for decay to half value) at the high-
voltage terminal of the winding (located at the outermost layer 
of the winding). For the simulation of the response of the 
winding to this waveform, the distributed parameter model 
described in Section II is applied, with its parameters 
computed as explained in Section III.  

 
 

TABLE I 
MAIN GEOMETRICAL DATA OF THE WINDING UNDER STUDY 

Core diameter [mm] 250 

Distance between windings and between 
winding and core [mm] 

10  

Winding conductor diameter [mm] 3 

Distance between layers [mm] 0.6 

Distance between turns [mm] 0.1 

Number of layers 4 

Number of turns per layer 50 
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Fig. 3 shows a comparison of the transient voltages at 
different turns of the winding with the proposed model and by 
means of a model based also on a multiconductor line 
representation, but defined in the frequency domain and 
solved in time domain by means of the inverse numerical 
Laplace transform [8]. Waveforms are very similar for all the 
turns shown in the figure. 

Fig. 4 shows, by means of a contour map, the behavior of 
the winding along all its turns and for all the time range under 
consideration. This type of plot allows identifying the region 
of maximum voltage stress and the time period in which this 
occurs. Finally, as an example of the possible application of 
the proposed model for insulation design, Fig. 5 shows the 
inter-turn dielectric stresses along the first layer, computed as 
described in [3]. The region of maximum stress is observed in 
the last turns, with values around 70 MV/m, indicating that 
dielectric distances and insulation material between turns of 
the winding prototype require improvement to avoid 
breakdown.  

A complete study of dielectric stresses should consider all 
the layers, the stress between HV and LV windings and in 
particular the inter-layer stresses, which can be even greater 
that the inter-turn stresses due to the large potential difference 
between turns from different layers. However, the scope of 
this paper is only to establish the accuracy of the proposed 
model, with aims of its future application in commercial 
EMTP-type programs. 

 

 
Fig.3. Transient voltages at different turns of the winding. Results from the 
proposed model are shown in continuous line. Results from the numerical 
Laplace transform are shown in dotted line. 
 

 
Fig.4. Contour map of the transient voltages (absolute value, in p.u.) along the 
winding 

 
Fig.5. Contour map of inter-turn dielectric stresses (in V/m) along the first 50 
turns of the winding. 

VI.  CONCLUSIONS 

A new time-domain modeling approach for the study of 
fast transients in transformer windings has been presented in 
this paper. This approach is based on the method of 
characteristics and the multiconductor line model but, 
conversely to the conventional method of characteristics, it 
does not require of any spatial discretization, making it more 
suitable for its implementation in EMTP-type programs, 
which do not include this type of models to date. 

The parameters required by the winding model are 
computed by means of FEM simulations and analytical 
expressions. The model is able to include frequency 
dependence of series and shunt losses. 

Comparisons with the results from the numerical Laplace 
transform for a 200 turns winding have shown that the 
proposed modeling approach has very good precision. Further 
results using contour maps of transient voltages and dielectric 
stresses were included to show possible application of the 
model for insulation design. 
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