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 Abstract—This paper presents an integral control strategy 

which integrates data from phase measurement units to damp 
inter-area oscillations. The proposed decentralized model 
predictive control method has one control unit for each 
controllable device (Generators, FACTS, HVDC) and 
coordinates their behavior after a fault. Each unit is designed by 
applying a systematic controller synthesis. The decentralized 
model predictive controller has a significantly improved 
dampening performance compared to a standard power system 
stabilizer. The stability and robustness can be evaluated. 
Furthermore, the control method also works with several 
transfer rates. 
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I.  INTRODUCTION 

HE growing demand for electrical power, the expansion 
of renewable energy sources (RES) and the hesitant 

extension of the power grid have increased the strain on the 
grid significantly. Consequently, transfer capabilities are very 
close to their limits and post-fault corrective actions are 
needed more often. With the rising number of RES the power 
system becomes more and more complex. Additionally, the 
amount of rotating mass decreases which has negative effects 
on grid stability. 
The existing electrical power systems in Europe and North 
America have multiple monitoring systems at transmission 
level. However, the control systems of power plants rely only 
on local measurements. The control law is therefore not based 
on the overall grid state, but only on the measured terminal 
voltages and frequency deviations. 
The proposed decentralized model predictive controller 
(dMPC) incorporates data from phase measurement units 
(PMU) into the control system. This concept is based on an 
analytical model, and hence inherently considers the stability 
and describes dynamical interaction between generators, 
power converters and grid dynamics. 

Several power system stabilizer (PSS) design methods 
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have been developed with significant effort. PSS methods can 
be divided into damping torque, frequency response and 
eigenvalue techniques. In [9] the damping torque concept has 
been developed, where the proportionality between electrical 
damping torque and speed perturbations is applied to damp 
the system. Whereas in [10] and [7] a robust, decentralized 
approach is proposed using linear matrix inequalities based on 
pole placement and H∞, respectively. In [11] wide area 
dynamical information is integrated into the control system 
based on a selective modal performance index, damping inter-
area modes. In [4] dMPC strategies have been formulated and 
applied to the control of the power system. The paper shows 
that the performance benefits obtained from MPC can be 
realized through dMPC for large scale systems. 

Due to the decentralized structure of the MPC controller, 
an implementation of large systems becomes viable. Classical 
PSS depend only on local measurements. With PMU control 
methods, which rely not only on local measurements, but on 
several node voltages become feasible. Multi-Input, Multi-
Output (MIMO) controllers account explicitly for couplings of 
the system and achieve an optimal control, considering all 
generators and power converters. Especially complex, coupled 
systems with several in- and outputs perform significantly 
better with a MIMO controller. dMPC control is based on 
MPC control, which is a MIMO controller with the described 
advantages. The presented dMPC control strategy achieves 
results very close to the global optimum for the following 
reasons. One decentralized control unit considers all state and 
input variables for the optimization. Every controller has the 
same global objective and considers the couplings of the 
entire system. The controller relies primarily on local 
measurements and uses global measurements when available. 
Thus, the approach does not assume a global sample rate. 

This paper is organized as follows: The synchronous 
generator and dynamic network models are introduced. Based 
on the models, an overall system is formulated and the dMPC 
control theory is explained. The potential of the dMPC 
controller in comparison to PSS is demonstrated with 
simulation results for a 4 generator network. 

II.  DEPLOYED MODEL 

A.  Generator Model 

A generator model proposed by [3] is used with fluxes per 
second as state variables, where d  and q  are fluxes per 

second of the dq-components. kd  and kq1  denote the 

T



fluxes per second of the damper windings. Furthermore, fd  

is the flux per second of the excitation. ue denotes the terminal 
voltage and uf the excitation voltage. 
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Only a symmetric operating mode is considered. The 0-
component is hence omitted. The torque equation  
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is used, where H is the coefficient of inertia and r
ei  is defined 

as following 
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md  and mq  are the main fluxes per second and can be 

expressed as functions of the state variables in (1). 
r
eu  and r

ei  are rotating with rotor speed r  and can be 

transformed to grid frequency with n
eu , n

ei . This is done using 
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where   is the rotor angle. The measurements of magnitude 
and phase can be transformed into dq-components rotating 
with grid frequency. Hence, dq-components rotating with 
rotor speed need to be transformed using (4). Substituting (4) 
into (1) leads to a nonlinear state space model, which depends 
on  ,   and the fluxes per second due to (2). 
The nonlinear model is linearized around an operating point 
 

  T

gen dq kq1 fd kdx         (5) 

 n
gen gen gen gen1 f gen 2 ex A x B u B u    (6) 

 

The output equation is a linearized form of (4) and (3). 
 

 n
e gen geni C x  (7) 

B.  Network Model 

The dynamic network model proposed by [1] and [2] is 
based on the node admittance matrix i Yu . Y  has the 

dimensions (n n) . To develop a dynamic model, each 

element of the admittance matrix is interpreted in Laplace 
space, which leads to the substitution j s , 
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where uF and uN denote the feeder and node voltages, 
respectively. The admittance matrix is based on Kirchhoff's 
current law as iN = 0. Therefore, the voltage for every node 
can be calculated with the knowledge of iF and a given 
impedance matrix where loads are included. The inverse of Y 
is defined as the adjugate divided by the determinant of Y. 
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In order to obtain a polynomial denominator and numerator of 
minimal order, Z(s) needs to be extended by N . N  is the 

product of the denominator of the lower triangular matrix, i.e. 
the denominator of Yij with (j > i). 
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The poles of Z(s) can be calculated with the determinant of Y, 
which are the eigenvalues of the system. 
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Since the degree of the numerator is higher than that of the 
denominator, (11) can be decomposed into 
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with a partial fraction decomposition, where n0 is the number 
of poles. Moreover, Zl can be decomposed into 

 l l l lZ V W  , (13) 

where l  are the eigenvalues of Zl, Vl and Wl are left- and 

right-hand eigenvectors. The matrices Zl have several 
properties as described by [1]. Since Y is symmetric and the 
properties of the adjugate are transferable to Zl, the following 
properties can be formulated for Zl: 
 

If rank(Y( l )) = n-1    rank(adj(Y( l ))) = 1 

If rank(Y( l ))   n-1   rank(adj(Y( l ))) = 0 

Y is symmetric   adj(Y) is symmetric 
 

If Zl is of rank 0, the decomposition (13) is not unique and l  

may set to zero.  
Furthermore, if Zl is of rank 1, the decomposition leads to l  

with only one non-zero element. Thus, l  can be reduced to 

one element l  with the corresponding eigenvectors vl and wl. 

 l l l lZ v w   (14) 



 

With (14) it is possible to formulate a state space model of 
minimal order, i.e. for every L-, C- element of the network 
only one state variable is introduced. In order to guarantee that 
the feeder currents iF are state variables, it is necessary to feed 
the system using a series RL- impedance. This is always the 
case, when the in-feed is realized using a transformer. 
The state variables are defined as 

 
T
l F

l
l

v i

s
 


 (15) 

and for complex eigenvalues as 
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The state space equations in this case become 
 

 s s FA B i     (18) 

 •
s F Fu C Ri Li    , (19) 

 

where u indicates the feeder and node voltages. 
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  s 1 1 l l l lC v Re{ v } Im{ v } ..      (22) 
 

As, Bs, Cs have the dimensions:  
 

dim(As) = ( 0 0n n ) dim(R) = ( n F ) 

dim(Bs) = ( 0n F ) dim(L) = ( n F ) 

dim(Cs) = ( 0n n )  

where F is the number of feeds and n is the dimension of the 
node admittance matrix. Since iN = 0, the matrices R- ,L- and 
B are not square, but have F columns.  
After transforming (18) into dq-components we obtain 
 

 dq N dq N dqA B i     (23) 

 •
dq N dq N dq N dqu C R i L i    . (24) 

C.  Overall Model 

An overall model needs to be established to describe the 
interaction of several generators and the dynamic network 
model. Therefore, the feeding current of (24) is replaced by 
the generator output (7) and state equation (6). 

 dq N dq N ggen genen N gen

(6)

u C R x LC xC      (25) 

The network and generator model are both dependent on udq. 
To link the corresponding terminal voltage with a feeding 
node e dq = u u  is introduced, where  E 0  . E is the 

2x2 identity matrix. The identity matrix is placed at the 

positions which allow the selection of the terminal voltage eu  

from all feeding voltages udq with the dimension (2F 1) . 

 e N G N gen gen1 fu C x L C B u( )       (26) 

 gen
1

N gen2(I L BC )     

 gen gN N genenR L C AC( )    

Substituting (26) into (6), (7) into (23) results in a coupled 
system (27) of generator and network states. 
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The coupled system of n generators and one network can be 
deduced with the same procedure. (29) is a continuous system 
suitable for controller synthesis. The output equation is 
denoted with (26) and an identity matrix is included that 
defines   as an output variable. The optimal stabilizing 
trajectory ustab for the system is calculated with the 
measurements from udq and   taken from each in-feed. ustab is 
added to an IEEE type 1 voltage regulator that is also included 
in the model.  

 

gen 1 gen 1
stab1

tot tot
gen n gen n

stab n
dq dq

x x
u

A B
x

u

 
x



 

 

   
    
          
             

 
  (28) 

 

gen 1dq1
stab1

tot tot
gen n1

stab n
dq

xu
u

C D
x

 

u





  
   
                     

 



 (29) 

Since totD 0 , totD  has a very small influence on the system 

behavior. Thus, totD  is omitted in the following. With (29) a 

model is introduced which describes the coupling between 
generator states and network states. Model predictive control 



is a time discrete control method. Therefore, (28) and (29) are 
transformed into the time discrete model (30). 
    1)  Partitioned Model 
Model partitions can be chosen arbitrarily, however in case of 
an electrical power system each generator is summarized as 
one sub-model and the network is also compiled into one sub-
model. Each generator sub-model can be controlled via ustab. 
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Any other controllable device, such as FACTs or HVDC can 
be modeled and included in a subsystem as well. 

III.  CONTROL SCHEME 

Conventional PSS have a decentralized control structure, 
and rely only on local measurements. The network and 
generator states of the deduced model (30) are heavily 
coupled and thus a MIMO controller has a better performance 
than a PSS. An implementation of a classical MIMO 
controller, with a central structure and one sample rate, will 
undoubtedly fail in practical applications, due to the spatially 
distributed nature of power systems. However, dMPC is an 
approach to implementing a controller that achieves results 
very close to its central counterpart and fulfills the conditions 
created by a real world system.  

The proposed control method shown in figure (1) has the 
following structure: A dMPC controller is implemented for 
each controllable device. Each controller works with two 
sample rates. The method is also extendable to several sample 
rates without any disadvantages. The primary rate Tsh is given 
by the local measurement system and the secondary sample 
rate by the global measurement Tsl system. Tsh is assumed to 
be an integer multiple of Tsl, therefore is h lr·Ts Ts  with 

r    . 

Figure 1: Control scheme with decentralized control units, one data 
concentrator state estimator 

 
As indicated in [8], it is advantageous to position the PMUs 

at the in-feed nodes, involved in frequency and/or voltage 
control. Every major feeding node has one PMU available, 
where U, I and   are measured, thus enabling the calculation 
of the local generator states. Since dMPC controller and PMU 
are located in proximity of each other a high transfer rate of 
Tsh is assumed. 

All PMUs transmit their data to a data concentrator, which 
preprocesses the data for the dynamic state estimator. The 
state estimator also includes a state space model and estimates 
all state variables of the overall model (30). The trajectories of 
the dMPC controllers u  need to be exchanged as well. The 
estimates x̂  are transmitted to the dMPC omitting the 
available local measurements. For the procedure of 
transmitting PMU measurements, estimation and transmission 
of x̂  and u a low transfer rate of Tsl is assumed. Only one 
data concentrator is needed for the proposed control scheme. 
A detailed example of the control structure and data 
transmissions for a benchmark model is depicted in Figure (2). 
The control variables are udq and   for each generator. 

IV.  FEASIBLE COOPERATION MODEL PREDICTIVE CONTROL 

A model predictive controller anticipates the plant behavior 
with a model over a prediction horizon of N time steps. The 
MPC method is based on [4], where a detailed derivation can 
be found. 

The discrete model (30) is successively inserted into itself 
i.e. (32) into (33). This is done to demonstrate the procedure 
for two time steps. p always denotes variables of external 
subsystems and j always denotes variables of the own 
subsystem. 
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Since h lr·Ts Ts , up and xp are updated only at every (r-1) th 

time step of the primary sample rate Tsh. Hence, 
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which expands (33) to 
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A general predictive form of a model for N time steps hTs , 

which depends only on u  and the current state (k)x  is 
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with 
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j j j jx x x x     (37) 

  T(k 1) (k 2) )
j j

(k N
j ju u u u     (38) 

for the subsystem j. The matrices E and f are defined in the 
appendix. Since the existing problem is an output regulator 
problem with the control variables udq and  , the output 
equation over the prediction horizon is needed. The output j is 
coupled with all subsystems 
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The MPC controller calculates the optimal actuating variable 
considering the cost function 
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Cooperation of the dMPC controllers is needed to achieve 
system wide objectives. Therefore, the overall system 
influence and the objectives of all subsystems are incorporated 
intoVj, the cost function of one subsystem j. wjs is a weighting 

term for each subsystem with js
s

w 1  and jsw 0 . s  is 

the set point for each subsystem and Q, R are positive-definite 
weighting matrices.  
A quadratic cost function was taken for this example. 
Complex cost functions as indicated in [11], could be 

advantageous. The matrix jiC  is also defined in the appendix. 

Substituting (36) into (39) and the resulting equation into (40) 
formulates a PQ-problem. Vj is only optimized for ju . 
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V min u u (K x W u ) u
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To calculate the optimal solution for a trajectory opt, ju , 

equation (41) is differentiated with respect to ju  and set to 

zero. 
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1 T
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j , MPC, jK  and MPC, jpW are defined in the appendix. The 

implemented dMPC procedure does not explicitly account for 
constraints such as the rate of change or saturation effects. 
Therefore, a static control matrix can be calculated, which has 
several inherent advantages.  

 
 The optimization can be calculated offline  
 No iterative approach 
 Stability and robustness analysis is possible 

A.  Stability assessment 

The stability of the system can be calculated with  

 (k 1) (k) (k)
optx Ax Bu    (44) 

The system is defined according to (30) and (31). Substituting 
(43) into (44) leads to 

 1 (k)
MPC(A B K )x  . (45) 

The eigenvalues of (45) need to be stable, furthermore 
robustness properties can be analysed according to [13]. 

V.  SIMULATION RESULTS 

A 4 generator benchmark model according to [5] is chosen 
to demonstrate the performance of the developed dMPC 
approach. The network including communication and control 
structure is depicted in Figure (2). Each feeding node is 
equipped with a PMU. Due to the proximity of the PMU to 

the corresponding dMPC a high transmission rate of hTs = 

50ms is assumed. The PMU data and the trajectories of each 
dMPC are also transmitted through a data concentrator to the 
state estimator. A Kalman-Bucy Filter is used for the 
estimation. By applying (29), the filter estimates all state 
variables x. As indicated in Figure (1) all state variables, 
except for those xj locally available, are transferred to the 
corresponding dMPC controller. In addition, all trajectories u 
need to be exchanged. The procedure of data transmission and 
state estimation is more time consuming. The transfer rate of 
external signals Tsl is allowed to be four times lower than the 
primary transfer rate Tsh. (Tsl =200ms) 

Figure 2: Network with dMPC control, communication, data concentrator and 
state estimator 



The stabilizing signal ustab from each dMPC unit is added to 
the excitation control.  
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Figure 3:   of dMPC controlled system in comparison to PSS after a 500 ms 
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Figure 4: |U| of dMPC controlled system in comparison to PSS after a 500 ms 
short circuit 
 

Figure 3 shows the rotor speed and Figure 4 shows the 
magnitude of the terminal voltages of all generators. The 
simulation results created with the dMPC procedure 
(continuous line) are compared to a MB-PSS IEEE® type 
PSS4B according to IEEE Std 421.5 (dotted line). After one 
second of simulation time a 3-phase short circuit occurs at 
node 8 for 500 ms. dMPC and PSS are able to stabilize the 
system. However, as depicted in Figures 3 and 4 the time 
evolution of the rotor speed and voltage magnitude of the 
dMPC controlled system are significantly better than the PSS 
controlled system. The maximum rotor speed deviation of the 
dMPC controlled system is 0.005 p.u. compared to 0.025 p.u. 
for the PSS controlled system. After just 2.5 s the terminal 
voltage of the dMPC controlled system is equal to the set 
point. The PSS needs 5.5 s to damp the oscillation, and needs 
28.5 s to return the terminal voltage back to its set point. 
Moreover, simulation results show that if the transfer rate is 
chosen such that Tsl = Tsh = 0.05 s, the dynamic performance 
can be further improved. Furthermore, if the transfer rate is 
chosen to Tsl = Tsh = 0.2 s, the system cannot be stabilized. 

VI.  CONCLUSION 

The paper presents a novel approach to systematically 
integrate PMU-data and coordinate a large number of 
actuating hardware (Generators, FACTS, HVDC) even when 
several transfer rates are involved. The optimal trajectories for 
each control variable are calculated in order to damp inter-area 
oscillations. Each controller complies with the global 
objective. Hence, the dMPC approach has a dynamic 
performance close to a central MPC [4]. The method accounts 
for several transfer rates. The performance is significantly 
better compared to a MB-PSS, and thus the dMPC approach 
improves reliability and the operational flexibility. 

Furthermore, a novel model for power systems including 
grid dynamics has been established. Since inter-area 
oscillations appear at frequencies around 0.01 – 3 Hz, a static 
model operating at grid frequency cannot describe the 
phenomena correctly. A dynamic grid model is able to 
describe transients over the whole spectrum. 

VII.  APPENDIX 

The following matrices are defined: 
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The variables up and xp of all external subsystems are only 
updated every r-1 time steps, the derivation of [12] is 
modified. 
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( j,r·p 1) ( j,r·p z)
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
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Elements of O and g  which are not defined by (50) and (51), 

respectively, are zero. For the system of equations (32), (33) 
and following time steps 

 Ax Eu Gx(k)     (52) 

equation (52) can be formulated with (53)-(57). 
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  T

1 2 Mx x x x   (56) 

  T

1 2 Mu u u u   (57) 

Equation (52) solved for x , leads to the predictive model (36)
. 
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dMPC controller: 
M M M
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