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 Abstract-- This paper presents a program developed in 

MATLAB® to manipulate four ATP base files in order to make 
systematic simulations of faults along an overhead transmission 
line. Faults are: single-phase to ground, two-phase to ground, 
isolated two-phase and three-phase fault, with the possibility of 
varying the fault resistance value in the first two cases and the 
fault inception angle in all cases. 

Taking one transmission line end as reference, the simulated 
fault is moved along the line with an x step, which is defined by 
the user, until reaching the other end of the line. For every x the 
case simulation is done. The program identifies the line stretch in 
which the fault has been inserted and modifies the lengths of its 
sections to insert the fault at the corresponding distance from the 
line end taking it as a reference, keeping both the stretch and the 
total line length constant. Also, the measuring elements are 
moved with the fault point for verifying the desired inception 
angle. 
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I.  INTRODUCTION 

HE Alternative Transients Program (ATP) 1 is a 
powerful simulation tool based on the Electromagnetic 

Transients Program (EMTP) 2, and it has replaced the well-
know Transient Network Analyzers (TNAs) today. The 
studies that employ the ATP/EMTP (henceforth only ATP) 
software have goals framed in two broad categories. One of 
these is the design, which includes the insulation coordination, 
sizing of equipment, protection system specification, control 
system design, etc. The other one is the operation 
troubleshooting such as faults in power systems and transient 
analyses. 

ATP offers many benefits such as: the accurate simulation 
(through detailed model implementation of electric network 
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elements) of high frequency transients that occur within short 
time intervals and the ease in handling simulation results 
(which can be plotted or printed as time functions and stored 
in files for later processing), to name a few. For that, the 
electric protection area has become one of the largest ATP 
consumers, in particular, for designing new protection 
schemes. Current bibliography 3-5 reveals that the design 
of such schemes requires databases built by a large number of 
fault signals simulated in various power system operating 
conditions. 

The database generation implies the investment of large 
periods of time and often it represents a discouraging obstacle 
that prevents the completion or finalization of a particular 
project or study.  

The algorithm proposed in this paper, is a valuable tool 
designed to facilitate the extensive fault simulation. Even 
though the algorithm was designed for fault simulation on a 
transmission line originally, it can be applied in a wide range 
of simulation possibilities due to its high versatility provided 
by the advantages offered by ATP and MATLAB® 6. 

This paper is organized as follows: Section II briefly 
describes the signal set required to do studies with protection 
systems, the program developed is detailed in Section III, 
Section IV deals with the program application oriented to 
systematic fault simulation on a transmission line and presents 
the base cases implemented in ATPDraw 7. Finally, the 
main conclusions of this work are summarized in Section V. 

II.  SIGNALS REQUIRED BY PROTECTION SYSTEMS 

In general, the traditional protection systems used in power 
systems, require a fault signal set for verifying the protection 
coordination and the performance of each of them and the 
whole, under different power system operating conditions. 

On the other hand, for developing new protection schemes 
based on the principle known as Transient Based Protection 
(TBP) 8, having a fault signal set in the stages of: training, 
validation and test is fundamental. 

The first stage consists in either: training the proposed 
protection algorithm 9-10, determining (or extract) 
characteristic patterns of fault in order to facilitate their 
classification 11, adjusting specific parameters for an 
appropriate algorithm operation 12, etc. whereas the 
validation stage makes use of a different fault signal set with 
the goal of tuning up the parameters required by the 

T 



algorithms. Finally, the test stage allows for verifying that the 
proposed protection schemes satisfy all imposed conditions 
for ensuring their correct operation and the desirable 
performance. 

Thereby, for the TBP protection case, the larger the 
databases used in the three stages described above, the better 
adjustment and test of the proposed schemes. Therefore, the 
algorithm detailed in this paper constitutes a useful tool that 
aids development of new TBP schemes and it also involves a 
significant amount of time saving and reduces human errors; 
and so, it can be practically employed in studies with 
traditional protection systems.  

III.  PROGRAM DEVELOPED 

Fig. 1 shows the program general flowchart. 
 

 

Fig. 1.  Program general flowchart.  

Before starting the simulation process, some data must be 
taken from the power system modeled in ATP and they are 
included into the simulation function as fixed input data; for 
instance: the power frequency, the transmission line length, 

the zero-crossing voltage time in both line ends, among 
others. 

The program starts by running the simulation function 
created in MATLAB®, for which some input variables must 
be initialized. This function can have as many input variables 
as needed. It is recommendable that the first input variable 
will be the base_case. The base_case variable represents the 
.atp file (created previously in ATPDraw) on which the 
simulation will be done. In this manner, there are as many 
base cases as are required. For instance, for the program 
application described in Section IV there are four base cases, 
which are the fault types considered on an overhead 
transmission line.  

The remaining input variables are the parameters to be 
modified along simulation within the .atp file selected. 

Once the base case has been chosen, the program uses 
closed loops through the command “for” in order to go on to 
modifying the simulation parameters. That is, there are as 
many nested closed loops as parameters to be modified, 
depending on the disturbance to be simulated. For the example 
detailed in next section, three nested closed loops are required 
with the purpose of changing: the fault point along the line, 
the fault inception angle and the fault resistance value (if 
admitted, according to the fault type).  

The limits of simulation are established in the variable 
initialization.  

Special attention must be given to the disturbance point 
variation. ATP offers a vast assortment of simulation options 
and it allows for choosing among a great variety of power 
system component models. If the Line Constant (LCC) model 
1 is selected for the transmission line on which the 
disturbance will be simulated, two additional subroutines 
called generate_line and write_lib are enabled in the 
simulation function.  

The generate_line subroutine generates a variable that 
contains the values needed to create a .lib file belonging to a 
LCC transmission line of length x. In this case, x is the 
variable that goes changing the disturbance point, which is 
performed by modifying the corresponding data in the 
template file base_line.dat.  

For its part, the write_lib subroutine is used to write to disk 
all variables that contain the information of the line sections 
(see Section IV). For each variable a .lib file is created. This 
subroutine calls another one named save_file, which is briefly 
described below.  

On the other hand, if another transmission line model 
(different from LCC) is chosen, then the changes for 
simulation are made only within the .atp file.  

The program is complemented by a subroutine called 
save_file located within the innermost loop and it aims to save 
to disk the changes in the .dat and .lib files generated by the 
subroutines generate_line and write_lib; and also to write to 
disk the name_case.atp file before starting each simulation. 

The link between MATLAB® and ATP is made through the 
MATLAB command “dos” to run the file name_case.atp 
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Fig. 2.  ATPDraw line model scheme. 

taking into account the modifications done for each 
simulation.  

The output data (transient signals) are saved as MATLAB 
data files (*.mat) by using the freeware routine Pl42mat 13 
and they are called name_case.mat in accordance to all 
simulation parameters. For instance, the file named 
90_r5_k_230_2ground.mat corresponds to a two-phase to 
ground fault simulated on a selected transmission line at 
kilometer 230 with 5  as fault resistance and an inception 
angle of 90 (taking the voltage signal of phase A as 
reference). The phases involved in the fault, are those 
established in the corresponding .acp file, as shown in Fig. 3. 

The simulation function has just one output variable, which 
is called verify and it serves as a control variable for checking 
a correct simulation. Within this output variable, the program 
records all data needed by the user for their examination.   

More details about each program part are given in the next 
section for a particular application.  

IV.  PROGRAM APPLICATION FOR EXTENSIVE FAULT 

SIMULATION 

The program presented in this paper was employed for 
building a database made up by transient signals rising from a 
total of 5,328 faults simulated on the Argentinean power 
system modeled in ATP. Such a database was created with the 
intention of proposing a new TBP protection scheme for 
transmission lines 14. That scheme uses current 
measurements of only one phase of the three-phase systems 
for determining the fault direction, the faulted line and the 
fault type. The discrete wavelet transform is used to extract 
information concerning the high-frequency components of 
transient current signals. An adaptive wavelet, which has been 
specifically designed for relaying purposes, it was used. For 
signal classification, the protection scheme at hand employs 
Bayesian linear discriminant analysis. 

In [14], a 396 km transmission line was used for analyses. 
Fig. 2 shows the aforementioned line divided into four 
stretches of 1/6, 1/3, 1/3 and 1/6 of total line length by virtue 
of three existing transpositions. As can be observed, each 
stretch was subdivided in two sections, and four internal 
nodes denominated NF1, NF2, NF3 and NF4 are used for 
connecting the fault models illustrated in Fig. 3.  

Table I listed the stretch lengths and their corresponding 
sections, taking into consideration a total transmission line 
length of L.  

All line sections were modeled by using the LCC model 
that generates a .lib file, which is read and included by the 
ATP when running the simulation case. The LCC routine is 

included in the ATP and it calculates the transmission line 
primary constants from its geometry and the line conductors. 
Several LCC models are available in ATP: Jmarti, Pi, 
Bergeron, etc. The Jmarti model was chosen to create the line 
depicted in Fig. 2. 

The LCC routine takes a .dat file as input, with all line data 
(geometry, conductors, earth resistivity, line length, model 
type, etc.). Particularly, in the case of Jmarti line models, 
running with ATP the .dat file, generate a .pch file. The latter 
contains the information of frequency dependent line model 
such as: the distortion function that waves experienced while 
they traveled along the line, the characteristic impedance 
function, the wave propagation speed and the modal 
transformation matrix. With the .pch file, a MATLAB 
subroutine generate_line generates a .lib file, which is read 
and included in the complete model to run the transient by the 
ATP for a particular fault point on the line. 

The geometry and the conductors of the line are considered 
equal throughout its length. This allows for using a single data 
line template (base_line.dat file) to generate all sections of 
Fig. 2 through MATLAB, and obtaining all .lib files according 
to the section length of each stretch. Also, diverse templates 
can be used for each line section if their geometry or 
conductors are different. 

TABLE I 
STRETCH AND SECTION LENGTH OF TRANSMISSION LINE OF FIG. 2 

Stretch Sections Length 
1 S1+S2 1/6*L 
2 S3+ S4 1/3*L 
3 S5+ S6 1/3*L 
4 S7+ S8 1/6*L 

 
The .lib file names that have been given to the 8 line 

sections of Fig. 2 in all base cases are: S1.lib, S2.lib, S3.lib, 
S4.lib, S5.lib, S6.lib, S7.lib and S8.lib. 

From a first base model built with ATPDraw corresponding 
to the desired power flow setting, four base cases were 
created, which are: single-phase to ground fault, two-phase to 
ground fault, isolated two-phase fault and three-phase fault. 
Each of these is obtained by inserting in the NFi node of Fig. 
2 the schemes illustrated in Fig. 3. In this manner, the 
ATPDraw generates the ATP code for each fault type, which 
is subsequently modified by MATLAB. 

A.  Methodology for moving the fault along line 

By taking advantage that each stretch is divided in two 
sections, the faults are located between them. In this way, the 
section lengths are adjusted consecutively and the stretch total 



length is kept constant.  
The .atp base file is kept invariable, however, it reads to 

disk the .lib files that are manipulated by the program 
developed for moving the fault point. Thus, each time a 
simulation case is run, 8 new .lib files corresponding to the 8 
line sections are generated and read by the .atp base file. 

B.  Initial Arguments 

Fig. 4 shows the program flowchart for this particular 
application. 

Before starting the program some arguments must be 
included within the simulation function, some of them are 
obtained from a previous ATP run, and most of them are 
defined by the user.  
    1)   Data obtained from the model: 

L  Total line length. 
 

    2)  Data obtained from an ATP run: 
angS1  Phase A angle of side 1 of the line in degrees. 
angS2  Phase A angle of side 2 of the line in degrees. 
t0  Reference time. It is the time at which the voltage 

signal at side 1 passes through zero. 
 

    3)  Other arguments defined by user: 
directory  Simulation output directory. 
fault_type  Flag used to identifies the fault type: 1 for 

single-phase to ground, 2 for isolated two-phase, 3 for two-
phase to ground, and 4 if it is three-phase fault. 

Rrfault  Fault resistance value. 
phi  Fault inception angle in degrees. 
x0  Initial fault distance. 
step_x  Displacement length along the fault line. 
 

C.  Start Program: Initialize variables 

The program initializes the following variables with the 
input arguments:  

x  Fault distance measured from side 1 of the line. This is 
the most important variable and will be increased in step_x 
each time. 

RT  Total row of the base_case.atp file. 

 0.02 ( /360)delay phi             (1) 

where delay  is the inception angle expressed in seconds 
and the constant 0.02 is the time corresponding to one cycle of 
power frequency (50 Hz Argentinean power system). 

 
 
 

  1 2
360

0.02 angS angSDtime                                         (2) 

where Dtime is the diphase angle between the voltage 
signals at both line ends expressed in seconds. 

 /Dtx Dtime L                                  (3) 

where Dtx is the diphase angle (Dtime) per unit length 
expressed in seconds. 
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Fig. 3.  Fault schemes modeled in ATPDraw. (a) Single-phase to ground fault. 
(b) Two-phase to ground fault. (c) Isolated two-phase fault. (d) Three-phase 
fault. 
 

 
 

Fig. 4.  General flowchart of the developed program for extensive fault 
simulation.  
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D.  Open base_case 

By using the command "switch and case" the program 
compares the variable fault_type and so, the fault type defined 
by the user is recognized. Afterwards the corresponding .atp 
file is loaded into the variable base_case. 

Then, the number of atp code row containing the close time 
of circuit breaker used to perform the fault maneuvers is 
identified and recorded into a variable Rint.  In addition, the 
row number related to the fault resistance value is also 
identified and stored into Rrfault variable as the total row 
number of the atp base code in RT.  

The MATLAB command used for these tasks is 
“strmatch”, which finds matches for strings 6.  

Fig. 5 shows the corresponding code for single-phase to 
ground fault case. 

switch fault_type 
case 1 %single-phase to ground fault 
base_case=char(textread('base_casesingle.atp',... 
'%s','delimiter','\n','whitespace','')) 
Rint = strmatch('  NF1A  INT',base_case) 
Rrfault = strmatch ... 
('  INT              ',base_case) 
end 
RT=length(base_case) %total rows of base_case file 

Fig. 5.  Fault type selection and atp base_case variable. 

E.  Variable x initialization and main loop start 

By following the flowchart of Fig. 4, the variable x is 
initialized to the value x0 and the main loop for fault 
displacement is started by using a “for” statement from x0 to L 
in step_x intervals. 

F.  Determine stretch of fault 

By moving the fault point from one side to another, it must 
pass for the four line stretches.  

The stretch to insert the fault is determined by the value of 
variable x and the node name (NFi) to connect the fault circuit 
breaker depends on this determination.  

This procedure has been solved by an “if” statement as 
shown in Fig. 6. The variable stretch is used to identify the 
stretch where the fault is simulated.  

 

if x > L 
     warning('x out of range (x>L)')     
     stop  
     elseif x > L*5/6 
         stretch=4        %stretch 
         Lstretch =1/6*L  %stretch length 
         Lini=5/6*L       %stretch initial length 
     elseif x > L/2 
         stretch =3 
         Lstretch=1/3*L 
         Lini=L/2 
     elseif x > L/6 
         stretch=2 
         Lstretch=1/3*L 
         Lini=L/6 
     elseif x > 0 
         stretch=1 
         Lstretch=1/6*L 
         Lini=0 
     else 
     warning('x out of range (x<0)')     
     stop 
end 

Fig. 6.  Stretch determination. 

G.   Generate lines 

The two line sections corresponding to the stretch in which 
the fault is placed are named section A and B. The lengths of 
these sections are calculated by: 

 LA x Lini               (4) 

 LB Lstretch LA              (5) 

where: 
LA is the length of section A. 
LB is the length of section B. 
Lini is the length in which the stretch begins; it is measured 

respect to the line side 1. 
Lstretch is the length of stretch corresponding to the fault 

position. 
As previously mentioned, the program has a subroutine 

called generate_line which creates the code .lib taking into 
account the length of the line. This subroutine opens the .dat 
line template, replaces the required length, runs ATP to 
generate the .pch file and finally, from it, generates the 
corresponding .lib code in a variable called LineXlib. This 
subroutine does not save that variable to a file disk, it is just 
within a variable. The save to disk task is done by another 
subroutine called save_file, which is explained in paper 
Section IV.J. 

The length of sections S1, S2, S7 and S8 of the default 
base_case files are L/12, and the remaining L/6. Therefore, in 
addition to sections A and B (that are loaded in every ATP 
run),  a .lib code for lines of length L/12 and L/6 is necessary. 
These .lib codes are generated once and they are stored with 
variable names SL12 and SL6, respectively. 

Once the section A and B .lib codes have been generated 
(sections where the fault lies) in variables SA and SB, all the 8 
.lib variables corresponding to the 8 sections are sent to write 
to disk files by overwriting the previous .lib files in the work 
directory.  

For this purpose the subroutine write_lib is used, which has 
8 input arguments corresponding to the codes of 8 line 
sections. This subroutine saves the contents of each argument 
in .lib files with names according to Table II. 

Thus, by calling the subroutine write_lib, variables that 
contain the .lib code are passed as arguments sorted by the 
stretch in which the fault lies. This task is done by a sentence 
“switch and case”. The stretch in which the fault lies must be 
previously identified by the variable stretch (see Section 
IV.F). 

The .lib file names in table II match the names of the base 
cases as can be seen in Fig. 2. 

Finally, the arguments used to call the subroutine write_lib 
are cited in Table III. 



 
TABLE II 

NAMES USED BY WRITE_LIB SUBROUTINE  
TO STORE VARIABLES IN DISK 

Argument File name 
1 S1.lib 
2 S2.lib 
3 S3.lib 
... ... 
8 S8.lib 

 
 

TABLE III 
SUBROUTINE WRITE_LIB ARGUMENTS 

Value of 
variable 
stretch 

 
Order of arguments 

1 
write_lib (SA, SB, SL6, SL6, SL6, SL6, 

SL12, SL12) 

2 
write_lib (SL12, SL12, SA, SB, SL6, 

SL6, SL12, SL12) 

3 
write_lib (SL12, SL12, SL6, SL6, SA, 

SB, SL12, SL12) 

4 
write_lib (SL12, SL12, SL6, SL6, SL6, 

SL6, SA, SB) 

H.   Replace fault resistance and fault time 

Depending on the fault type chosen to be simulated (see 
Section IV.B), different fault resistance values are employed 
for fault simulation according to the arguments provided by 
the user. For that, the program automatically replaces the fault 
resistance information in Rrfault row of base_case file that 
contains all atp code.  

To obtain the desired fault inception angle (phi), the 
program computes with (2) the diphase angle between the 
phase A (if chosen as reference) voltage signals of both line 
ends in the power system steady state. After that, the angle 
diphase per unit length is calculated through (3) and with this 
information, the close time of circuit breaker that inserts the 
fault is regulated as the fault is moved. Thereby, the circuit 
breaker close time tf (fault inception angle) is always 
desirable, as follows: 

  0tf t Dtx x                (6) 

I.  Execute ATP 

Once the modifications required have been made, the 
base_case.atp file is saved with subroutine save_file and it is 
named respecting the code given in Section III. 

Then the .atp file saved is run with ATP and its output file 
is saved as .mat file.  

Finally, step_x is added to x and all actions within main 
closed loop are run over and over until satisfying the imposed 
condition. 

 

J.  Subruoutine save_file 

To write to disk the new files, a subroutine named save_file 
was developed in MATLAB environment. This subroutine is 
responsible for saving the modified files .dat and .atp and the 
generated files .lib. To do that, the MATLAB Escape 
Characters 6 are firstly replaced by the save_file subroutine. 
These characters are: 

 ''  Single quotation mark 
%%  Percent character 
\\ Backslash 
Later a new file is generated to disk, the file in which the 

variable that contains the data to be saved is written.  
Fig. 7 shows the complete code of this subroutine. The 

“fopen” command creates a new file to disk and the wt option 
is for opening or creating a new text file to be written, 
discarding existing content.  

The “fprintf” command writes data to a text file. V1 and V2 
are auxiliary variables and directory is the path in which the 
new file is going to be placed. 

 

function[]=writetodisk(var,name,ext) 
V1=[]     
V2=[]     
for fila=1:size(var) 
    V1=strrep(var(fila,:),'\','\\'); 
    V1=strrep(V1,'''',''''''); 
    V1=strrep(V1,'%','%%'); 
    V2=strvcat(V1,V2); 
end 
  
fid = fopen([directory,... 

'\',strcat(name,ext)], 'wt'); 
  
for fila=1:size(V2); 
    fprintf(fid,[(V2(fila,:)),'\n']); 
end 
  
fclose(fid) 
  
end 

Fig. 7.  MATLAB code of subroutine save_file. 

V.  CONCLUSIONS 

A valuable tool for extensive simulation in ATP/EMTP has 
been presented in this paper. It is a linking program between 
MATLAB® and ATP that thanks its high versatility, has a 
wide range of simulation possibilities of power system 
disturbances, for example: faults or lightning strokes.  

The main advantage of this technique is the time savings on 
building databases for systematic studies along a transmission 
line. Once the program is adjusted for the case under study, 
the results are obtained automatically. Little adjustment 
modifications can be done to develop a sensitivity analysis, 
without having to repeat all the cases one by one. 

The program application in some previous research work 
has evidenced the simulation time reduction and the human 
mistake elimination along simulation process. Its use is highly 
recommended in those cases that require large databases built 
with transient signals; databases that are specifically useful in 
diverse power system areas, like the example detailed in 
Section IV that relates to protection systems.  However, the 
program can be also applied on traditional analyses that do not 



require large databases.  
In addition, the ease in resulting data handling within a 

MATLAB environment adds another advantage and increases 
the program potential to be widely used by the scientific 
community.  
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