
MATLAB Program for Systematic Simulation over
a Transmission Line in Alternative Transients

Program

G. D. Guidi-Venerdini, F. E. Pérez-Yauli

 Abstract-- This paper presents a program developed in

MATLAB® to manipulate four ATP base files in order to make
systematic simulations of faults along an overhead transmission
line. Faults are: single-phase to ground, two-phase to ground,
isolated two-phase and three-phase fault, with the possibility of
varying the fault resistance value in the first two cases and the
fault inception angle in all cases.

Taking one transmission line end as reference, the simulated
fault is moved along the line with an x step, which is defined by
the user, until reaching the other end of the line. For every x the
case simulation is done. The program identifies the line stretch in
which the fault has been inserted and modifies the lengths of its
sections to insert the fault at the corresponding distance from the
line end taking it as a reference, keeping both the stretch and the
total line length constant. Also, the measuring elements are
moved with the fault point for verifying the desired inception
angle.

Keywords: ATP, EMTP, Faults, MATLAB, Systematic

Simulation, Transmission Line, Transient Based Protection.

I. INTRODUCTION

HE Alternative Transients Program (ATP) 1 is a
powerful simulation tool based on the Electromagnetic

Transients Program (EMTP) 2, and it has replaced the well-
know Transient Network Analyzers (TNAs) today. The
studies that employ the ATP/EMTP (henceforth only ATP)
software have goals framed in two broad categories. One of
these is the design, which includes the insulation coordination,
sizing of equipment, protection system specification, control
system design, etc. The other one is the operation
troubleshooting such as faults in power systems and transient
analyses.

ATP offers many benefits such as: the accurate simulation
(through detailed model implementation of electric network

This work was supported in part by the Consejo Nacional de Investiga-

ciones Científicas y Técnicas (CONICET) and German Academic Exchange
Service (DAAD).

G. D. Guidi-Venerdini is with the Instituto de Energía Eléctrica,
Universidad Nacional de San Juan, San Juan, Argentina (e-mail:
gguidi@iee.unsj.edu.ar).

F. E. Pérez-Yauli is with the Instituto de Energía Eléctrica, Universidad
Nacional de San Juan, San Juan, Argentina (e-mail: fperez@iee.unsj.edu.ar).

Paper submitted to the International Conference on Power Systems

Transients (IPST2013) in Vancouver, Canada July 18-20, 2013.

elements) of high frequency transients that occur within short
time intervals and the ease in handling simulation results
(which can be plotted or printed as time functions and stored
in files for later processing), to name a few. For that, the
electric protection area has become one of the largest ATP
consumers, in particular, for designing new protection
schemes. Current bibliography 3-5 reveals that the design
of such schemes requires databases built by a large number of
fault signals simulated in various power system operating
conditions.

The database generation implies the investment of large
periods of time and often it represents a discouraging obstacle
that prevents the completion or finalization of a particular
project or study.

The algorithm proposed in this paper, is a valuable tool
designed to facilitate the extensive fault simulation. Even
though the algorithm was designed for fault simulation on a
transmission line originally, it can be applied in a wide range
of simulation possibilities due to its high versatility provided
by the advantages offered by ATP and MATLAB® 6.

This paper is organized as follows: Section II briefly
describes the signal set required to do studies with protection
systems, the program developed is detailed in Section III,
Section IV deals with the program application oriented to
systematic fault simulation on a transmission line and presents
the base cases implemented in ATPDraw 7. Finally, the
main conclusions of this work are summarized in Section V.

II. SIGNALS REQUIRED BY PROTECTION SYSTEMS

In general, the traditional protection systems used in power
systems, require a fault signal set for verifying the protection
coordination and the performance of each of them and the
whole, under different power system operating conditions.

On the other hand, for developing new protection schemes
based on the principle known as Transient Based Protection
(TBP) 8, having a fault signal set in the stages of: training,
validation and test is fundamental.

The first stage consists in either: training the proposed
protection algorithm 9-10, determining (or extract)
characteristic patterns of fault in order to facilitate their
classification 11, adjusting specific parameters for an
appropriate algorithm operation 12, etc. whereas the
validation stage makes use of a different fault signal set with
the goal of tuning up the parameters required by the

T

algorithms. Finally, the test stage allows for verifying that the
proposed protection schemes satisfy all imposed conditions
for ensuring their correct operation and the desirable
performance.

Thereby, for the TBP protection case, the larger the
databases used in the three stages described above, the better
adjustment and test of the proposed schemes. Therefore, the
algorithm detailed in this paper constitutes a useful tool that
aids development of new TBP schemes and it also involves a
significant amount of time saving and reduces human errors;
and so, it can be practically employed in studies with
traditional protection systems.

III. PROGRAM DEVELOPED

Fig. 1 shows the program general flowchart.

Fig. 1. Program general flowchart.

Before starting the simulation process, some data must be
taken from the power system modeled in ATP and they are
included into the simulation function as fixed input data; for
instance: the power frequency, the transmission line length,

the zero-crossing voltage time in both line ends, among
others.

The program starts by running the simulation function
created in MATLAB®, for which some input variables must
be initialized. This function can have as many input variables
as needed. It is recommendable that the first input variable
will be the base_case. The base_case variable represents the
.atp file (created previously in ATPDraw) on which the
simulation will be done. In this manner, there are as many
base cases as are required. For instance, for the program
application described in Section IV there are four base cases,
which are the fault types considered on an overhead
transmission line.

The remaining input variables are the parameters to be
modified along simulation within the .atp file selected.

Once the base case has been chosen, the program uses
closed loops through the command “for” in order to go on to
modifying the simulation parameters. That is, there are as
many nested closed loops as parameters to be modified,
depending on the disturbance to be simulated. For the example
detailed in next section, three nested closed loops are required
with the purpose of changing: the fault point along the line,
the fault inception angle and the fault resistance value (if
admitted, according to the fault type).

The limits of simulation are established in the variable
initialization.

Special attention must be given to the disturbance point
variation. ATP offers a vast assortment of simulation options
and it allows for choosing among a great variety of power
system component models. If the Line Constant (LCC) model
1 is selected for the transmission line on which the
disturbance will be simulated, two additional subroutines
called generate_line and write_lib are enabled in the
simulation function.

The generate_line subroutine generates a variable that
contains the values needed to create a .lib file belonging to a
LCC transmission line of length x. In this case, x is the
variable that goes changing the disturbance point, which is
performed by modifying the corresponding data in the
template file base_line.dat.

For its part, the write_lib subroutine is used to write to disk
all variables that contain the information of the line sections
(see Section IV). For each variable a .lib file is created. This
subroutine calls another one named save_file, which is briefly
described below.

On the other hand, if another transmission line model
(different from LCC) is chosen, then the changes for
simulation are made only within the .atp file.

The program is complemented by a subroutine called
save_file located within the innermost loop and it aims to save
to disk the changes in the .dat and .lib files generated by the
subroutines generate_line and write_lib; and also to write to
disk the name_case.atp file before starting each simulation.

The link between MATLAB® and ATP is made through the
MATLAB command “dos” to run the file name_case.atp

S8

NF4

LCC

I

S2

NF1

LCC

S6

NF3

LCC

S4

NF2

LCC

S1

LCC
I

S3

LCC

S5

LCC

S7

LCC

V V

Side 1

Side 2STRETCH 1 STRETCH 2 STRETCH 3 STRETCH 4

Fig. 2. ATPDraw line model scheme.

taking into account the modifications done for each
simulation.

The output data (transient signals) are saved as MATLAB
data files (*.mat) by using the freeware routine Pl42mat 13
and they are called name_case.mat in accordance to all
simulation parameters. For instance, the file named
90_r5_k_230_2ground.mat corresponds to a two-phase to
ground fault simulated on a selected transmission line at
kilometer 230 with 5  as fault resistance and an inception
angle of 90 (taking the voltage signal of phase A as
reference). The phases involved in the fault, are those
established in the corresponding .acp file, as shown in Fig. 3.

The simulation function has just one output variable, which
is called verify and it serves as a control variable for checking
a correct simulation. Within this output variable, the program
records all data needed by the user for their examination.

More details about each program part are given in the next
section for a particular application.

IV. PROGRAM APPLICATION FOR EXTENSIVE FAULT

SIMULATION

The program presented in this paper was employed for
building a database made up by transient signals rising from a
total of 5,328 faults simulated on the Argentinean power
system modeled in ATP. Such a database was created with the
intention of proposing a new TBP protection scheme for
transmission lines 14. That scheme uses current
measurements of only one phase of the three-phase systems
for determining the fault direction, the faulted line and the
fault type. The discrete wavelet transform is used to extract
information concerning the high-frequency components of
transient current signals. An adaptive wavelet, which has been
specifically designed for relaying purposes, it was used. For
signal classification, the protection scheme at hand employs
Bayesian linear discriminant analysis.

In [14], a 396 km transmission line was used for analyses.
Fig. 2 shows the aforementioned line divided into four
stretches of 1/6, 1/3, 1/3 and 1/6 of total line length by virtue
of three existing transpositions. As can be observed, each
stretch was subdivided in two sections, and four internal
nodes denominated NF1, NF2, NF3 and NF4 are used for
connecting the fault models illustrated in Fig. 3.

Table I listed the stretch lengths and their corresponding
sections, taking into consideration a total transmission line
length of L.

All line sections were modeled by using the LCC model
that generates a .lib file, which is read and included by the
ATP when running the simulation case. The LCC routine is

included in the ATP and it calculates the transmission line
primary constants from its geometry and the line conductors.
Several LCC models are available in ATP: Jmarti, Pi,
Bergeron, etc. The Jmarti model was chosen to create the line
depicted in Fig. 2.

The LCC routine takes a .dat file as input, with all line data
(geometry, conductors, earth resistivity, line length, model
type, etc.). Particularly, in the case of Jmarti line models,
running with ATP the .dat file, generate a .pch file. The latter
contains the information of frequency dependent line model
such as: the distortion function that waves experienced while
they traveled along the line, the characteristic impedance
function, the wave propagation speed and the modal
transformation matrix. With the .pch file, a MATLAB
subroutine generate_line generates a .lib file, which is read
and included in the complete model to run the transient by the
ATP for a particular fault point on the line.

The geometry and the conductors of the line are considered
equal throughout its length. This allows for using a single data
line template (base_line.dat file) to generate all sections of
Fig. 2 through MATLAB, and obtaining all .lib files according
to the section length of each stretch. Also, diverse templates
can be used for each line section if their geometry or
conductors are different.

TABLE I
STRETCH AND SECTION LENGTH OF TRANSMISSION LINE OF FIG. 2

Stretch Sections Length
1 S1+S2 1/6*L
2 S3+ S4 1/3*L
3 S5+ S6 1/3*L
4 S7+ S8 1/6*L

The .lib file names that have been given to the 8 line

sections of Fig. 2 in all base cases are: S1.lib, S2.lib, S3.lib,
S4.lib, S5.lib, S6.lib, S7.lib and S8.lib.

From a first base model built with ATPDraw corresponding
to the desired power flow setting, four base cases were
created, which are: single-phase to ground fault, two-phase to
ground fault, isolated two-phase fault and three-phase fault.
Each of these is obtained by inserting in the NFi node of Fig.
2 the schemes illustrated in Fig. 3. In this manner, the
ATPDraw generates the ATP code for each fault type, which
is subsequently modified by MATLAB.

A. Methodology for moving the fault along line

By taking advantage that each stretch is divided in two
sections, the faults are located between them. In this way, the
section lengths are adjusted consecutively and the stretch total

length is kept constant.
The .atp base file is kept invariable, however, it reads to

disk the .lib files that are manipulated by the program
developed for moving the fault point. Thus, each time a
simulation case is run, 8 new .lib files corresponding to the 8
line sections are generated and read by the .atp base file.

B. Initial Arguments

Fig. 4 shows the program flowchart for this particular
application.

Before starting the program some arguments must be
included within the simulation function, some of them are
obtained from a previous ATP run, and most of them are
defined by the user.
 1) Data obtained from the model:

L  Total line length.

 2) Data obtained from an ATP run:
angS1  Phase A angle of side 1 of the line in degrees.
angS2  Phase A angle of side 2 of the line in degrees.
t0  Reference time. It is the time at which the voltage

signal at side 1 passes through zero.

 3) Other arguments defined by user:
directory  Simulation output directory.
fault_type  Flag used to identifies the fault type: 1 for

single-phase to ground, 2 for isolated two-phase, 3 for two-
phase to ground, and 4 if it is three-phase fault.

Rrfault  Fault resistance value.
phi  Fault inception angle in degrees.
x0  Initial fault distance.
step_x  Displacement length along the fault line.

C. Start Program: Initialize variables

The program initializes the following variables with the
input arguments:

x  Fault distance measured from side 1 of the line. This is
the most important variable and will be increased in step_x
each time.

RT  Total row of the base_case.atp file.

 0.02 (/360)delay phi (1)

where delay is the inception angle expressed in seconds
and the constant 0.02 is the time corresponding to one cycle of
power frequency (50 Hz Argentinean power system).

 
 
 

  1 2
360

0.02 angS angSDtime (2)

where Dtime is the diphase angle between the voltage
signals at both line ends expressed in seconds.

 /Dtx Dtime L (3)

where Dtx is the diphase angle (Dtime) per unit length
expressed in seconds.

INT

Rfault

INT

Rfault

(a) (b)

(c) (d)

Fig. 3. Fault schemes modeled in ATPDraw. (a) Single-phase to ground fault.
(b) Two-phase to ground fault. (c) Isolated two-phase fault. (d) Three-phase
fault.

Fig. 4. General flowchart of the developed program for extensive fault
simulation.

To NFi To NFi

To NFi To NFi

D. Open base_case

By using the command "switch and case" the program
compares the variable fault_type and so, the fault type defined
by the user is recognized. Afterwards the corresponding .atp
file is loaded into the variable base_case.

Then, the number of atp code row containing the close time
of circuit breaker used to perform the fault maneuvers is
identified and recorded into a variable Rint. In addition, the
row number related to the fault resistance value is also
identified and stored into Rrfault variable as the total row
number of the atp base code in RT.

The MATLAB command used for these tasks is
“strmatch”, which finds matches for strings 6.

Fig. 5 shows the corresponding code for single-phase to
ground fault case.

switch fault_type
case 1 %single-phase to ground fault
base_case=char(textread('base_casesingle.atp',...
'%s','delimiter','\n','whitespace',''))
Rint = strmatch(' NF1A INT',base_case)
Rrfault = strmatch ...
(' INT ',base_case)
end
RT=length(base_case) %total rows of base_case file

Fig. 5. Fault type selection and atp base_case variable.

E. Variable x initialization and main loop start

By following the flowchart of Fig. 4, the variable x is
initialized to the value x0 and the main loop for fault
displacement is started by using a “for” statement from x0 to L
in step_x intervals.

F. Determine stretch of fault

By moving the fault point from one side to another, it must
pass for the four line stretches.

The stretch to insert the fault is determined by the value of
variable x and the node name (NFi) to connect the fault circuit
breaker depends on this determination.

This procedure has been solved by an “if” statement as
shown in Fig. 6. The variable stretch is used to identify the
stretch where the fault is simulated.

if x > L
 warning('x out of range (x>L)')
 stop
 elseif x > L*5/6
 stretch=4 %stretch
 Lstretch =1/6*L %stretch length
 Lini=5/6*L %stretch initial length
 elseif x > L/2
 stretch =3
 Lstretch=1/3*L
 Lini=L/2
 elseif x > L/6
 stretch=2
 Lstretch=1/3*L
 Lini=L/6
 elseif x > 0
 stretch=1
 Lstretch=1/6*L
 Lini=0
 else
 warning('x out of range (x<0)')
 stop
end

Fig. 6. Stretch determination.

G. Generate lines

The two line sections corresponding to the stretch in which
the fault is placed are named section A and B. The lengths of
these sections are calculated by:

 LA x Lini (4)

 LB Lstretch LA (5)

where:
LA is the length of section A.
LB is the length of section B.
Lini is the length in which the stretch begins; it is measured

respect to the line side 1.
Lstretch is the length of stretch corresponding to the fault

position.
As previously mentioned, the program has a subroutine

called generate_line which creates the code .lib taking into
account the length of the line. This subroutine opens the .dat
line template, replaces the required length, runs ATP to
generate the .pch file and finally, from it, generates the
corresponding .lib code in a variable called LineXlib. This
subroutine does not save that variable to a file disk, it is just
within a variable. The save to disk task is done by another
subroutine called save_file, which is explained in paper
Section IV.J.

The length of sections S1, S2, S7 and S8 of the default
base_case files are L/12, and the remaining L/6. Therefore, in
addition to sections A and B (that are loaded in every ATP
run), a .lib code for lines of length L/12 and L/6 is necessary.
These .lib codes are generated once and they are stored with
variable names SL12 and SL6, respectively.

Once the section A and B .lib codes have been generated
(sections where the fault lies) in variables SA and SB, all the 8
.lib variables corresponding to the 8 sections are sent to write
to disk files by overwriting the previous .lib files in the work
directory.

For this purpose the subroutine write_lib is used, which has
8 input arguments corresponding to the codes of 8 line
sections. This subroutine saves the contents of each argument
in .lib files with names according to Table II.

Thus, by calling the subroutine write_lib, variables that
contain the .lib code are passed as arguments sorted by the
stretch in which the fault lies. This task is done by a sentence
“switch and case”. The stretch in which the fault lies must be
previously identified by the variable stretch (see Section
IV.F).

The .lib file names in table II match the names of the base
cases as can be seen in Fig. 2.

Finally, the arguments used to call the subroutine write_lib
are cited in Table III.

TABLE II

NAMES USED BY WRITE_LIB SUBROUTINE
TO STORE VARIABLES IN DISK

Argument File name
1 S1.lib
2 S2.lib
3 S3.lib
... ...
8 S8.lib

TABLE III
SUBROUTINE WRITE_LIB ARGUMENTS

Value of
variable
stretch

Order of arguments

1
write_lib (SA, SB, SL6, SL6, SL6, SL6,

SL12, SL12)

2
write_lib (SL12, SL12, SA, SB, SL6,

SL6, SL12, SL12)

3
write_lib (SL12, SL12, SL6, SL6, SA,

SB, SL12, SL12)

4
write_lib (SL12, SL12, SL6, SL6, SL6,

SL6, SA, SB)

H. Replace fault resistance and fault time

Depending on the fault type chosen to be simulated (see
Section IV.B), different fault resistance values are employed
for fault simulation according to the arguments provided by
the user. For that, the program automatically replaces the fault
resistance information in Rrfault row of base_case file that
contains all atp code.

To obtain the desired fault inception angle (phi), the
program computes with (2) the diphase angle between the
phase A (if chosen as reference) voltage signals of both line
ends in the power system steady state. After that, the angle
diphase per unit length is calculated through (3) and with this
information, the close time of circuit breaker that inserts the
fault is regulated as the fault is moved. Thereby, the circuit
breaker close time tf (fault inception angle) is always
desirable, as follows:

  0tf t Dtx x (6)

I. Execute ATP

Once the modifications required have been made, the
base_case.atp file is saved with subroutine save_file and it is
named respecting the code given in Section III.

Then the .atp file saved is run with ATP and its output file
is saved as .mat file.

Finally, step_x is added to x and all actions within main
closed loop are run over and over until satisfying the imposed
condition.

J. Subruoutine save_file

To write to disk the new files, a subroutine named save_file
was developed in MATLAB environment. This subroutine is
responsible for saving the modified files .dat and .atp and the
generated files .lib. To do that, the MATLAB Escape
Characters 6 are firstly replaced by the save_file subroutine.
These characters are:

 '' Single quotation mark
%% Percent character
\\ Backslash
Later a new file is generated to disk, the file in which the

variable that contains the data to be saved is written.
Fig. 7 shows the complete code of this subroutine. The

“fopen” command creates a new file to disk and the wt option
is for opening or creating a new text file to be written,
discarding existing content.

The “fprintf” command writes data to a text file. V1 and V2
are auxiliary variables and directory is the path in which the
new file is going to be placed.

function[]=writetodisk(var,name,ext)
V1=[]
V2=[]
for fila=1:size(var)
 V1=strrep(var(fila,:),'\','\\');
 V1=strrep(V1,'''','''''');
 V1=strrep(V1,'%','%%');
 V2=strvcat(V1,V2);
end

fid = fopen([directory,...

'\',strcat(name,ext)], 'wt');

for fila=1:size(V2);
 fprintf(fid,[(V2(fila,:)),'\n']);
end

fclose(fid)

end

Fig. 7. MATLAB code of subroutine save_file.

V. CONCLUSIONS

A valuable tool for extensive simulation in ATP/EMTP has
been presented in this paper. It is a linking program between
MATLAB® and ATP that thanks its high versatility, has a
wide range of simulation possibilities of power system
disturbances, for example: faults or lightning strokes.

The main advantage of this technique is the time savings on
building databases for systematic studies along a transmission
line. Once the program is adjusted for the case under study,
the results are obtained automatically. Little adjustment
modifications can be done to develop a sensitivity analysis,
without having to repeat all the cases one by one.

The program application in some previous research work
has evidenced the simulation time reduction and the human
mistake elimination along simulation process. Its use is highly
recommended in those cases that require large databases built
with transient signals; databases that are specifically useful in
diverse power system areas, like the example detailed in
Section IV that relates to protection systems. However, the
program can be also applied on traditional analyses that do not

require large databases.
In addition, the ease in resulting data handling within a

MATLAB environment adds another advantage and increases
the program potential to be widely used by the scientific
community.

VI. REFERENCES

[1] Bonneville Power Administration, "Alternative Transients Program
(ATP)," ed. Portland, Oregon, U.S.

[2] H. W. Dommel, "Digital Computer Solution of Electromagnetic
Transients in Single-and Multiphase Networks," IEEE Trans. Power
Apparatus and Systems, vol. PAS-88, pp. 388-399, Apr.1969.

[3] J. A. Jiang, Ching-Shan Chen, and Chih-Wen Liu, "A new protection
scheme for fault detection, direction discrimination, classification, and
location in transmission lines," IEEE Trans. Power Delivery, vol. 18, pp.
34-42, Jan. 2003.

[4] E. M. Aboul-Zahab, E.-S.T. Eldin, D. K. Ibrahim and S. M. Saleh,
"High impedance fault detection in mutually coupled double-ended
transmission lines using high frequency disturbances," in MEPCON
2008 12th International Middle-East Power System Conf., pp. 412-419.

[5] G. Mahmoud, I. Doaa khalil, and T. El Sayed, "Traveling-Wave-Based
Fault-Location Scheme for Multiend-Aged Underground Cable System,"
IEEE Trans. Power Delivery, vol. 22, pp. 82-89, Jan. 2007.

[6] MATLAB, User's Guides. Natick, USA: The MathWorks Inc.

[7] ATPDraw, Dr. Hans Kr. Høidalen, SINTEF Energy Reseach -
Norwegian University of Science and Technology.

[8] Z. Q. Bo, F. Jiang, Z. Chen, X. Z. Dong, G. Weller and M. A. Redfern,
"Transient based protection for power transmission systems," in 2000
IEEE Power Engineering Society Winter Meeting, pp. 1832-1837 vol.3.

[9] G. Chawla, M. S. Sachdev and G. Ramakrishna, "Artificial neural
network applications for power system protection," in 2005 Electrical
and Computer Engineering Canadian Conf., pp. 1954-1957.

[10] M. A. Figueroa and E. Orduna, "Ultra-high-speed protection for medium
voltage distribution networks with distributed generation," in 2008
IEEE/PES Latin America Transmission and Distribution Conf. and Exp.,
pp. 1-8.

[11] C. Aguilera, E. Orduña, and G. Rattá, "Fault detection, classification and
faulted phase selection approach based on high-frequency voltage
signals applied to a series-compensated line," IEE Proceedings
Generation, Transmission & Distribution, vol. 153, pp. 469 - 475, July
2006.

[12] R. Aguilar, F. Pérez, and E. Orduña, "High-speed transmission line
protection using principal component analysis, a deterministic
algorithm," IET Generation, Transmission & Distribution, vol. 5, pp.
712-719, July 2011.

[13] M. Ceraolo and R. Salutari, "PL42mat," ed. Pisa, 2009.
[14] F. E. Perez, R. Aguilar, E. Orduña, J. Jäger, and G. Guidi, "High-speed

non-unit transmission line protection using single-phase measurements
and an adaptive wavelet: zone detection and fault classification," IET
Generation, Transmission & Distribution, vol. 6, pp. 593-604, July
2012.

