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 Abstract – The paper proposes a novel method for the optimal 

parameter selection of the discrete-time switch model used in 

circuit solvers that adopt the Fixed Admittance Matrix Nodal 

Method (FAMNM) approach. As known, FAMNM-based circuit 

solvers allow to reach efficient computation times since they do 

not need the inversion of the circuit nodal admittance matrix. 

However, these solvers need to optimally tune the so-called 

discrete switch conductance, since this parameter might largely 

affect the simulations accuracy. Within this context, the method 

proposed in the paper minimizes the distance between the 

eigenvalues of the original circuit’s nodal admittance matrix with 

those associated with the presence of the discrete-time switches. 

The method is proven to provide values of the discrete-time 

switch conductance that maximize the simulation accuracy and 

minimize the losses on this artificial parameter. The 

performances of the proposed method are finally validated by 

making reference to two test cases: (i) a circuit composed of RLC 

elements, (ii) a network model that includes a single-phase 

transmission line. 

 

Keywords: Discrete-time switch model, modified nodal 

analysis, fixed admittance matrix nodal method, real-time 

simulation. 

I.  INTRODUCTION 

ccurate and computationally-efficient time-domain 

simulation of power systems including switches (e.g., 

traditional circuit breakers or power electronic devices) is a 

challenging subject since the tradeoff between accuracy and 

computation time depends on the adopted models of the 

switching devices. These aspects play an important role when 

power systems models need to account for a large number of 

switches and, also, when real-time simulation constraints have 

to be considered. 

Detailed switch models reproducing their physical 

properties are used when studying phenomena such as 

switching losses, arcing times and electromagnetic transients 

associated with switching arc extinction. However, in many 

power system applications, these sophisticated models cannot 

be used because of their required computational efforts and 

complexity of deployment. As a result, simplified switch 
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models have been proposed in the literature (e.g. [1,2]). 

In addition to the ideal switch model, one of the most 

popular methods consists in representing this device as a 

lumped electrical component (e.g., the two-valued resistor 

model) with a value associated to each switch state. In 

particular, a typical representation consists in replacing the 

switch by means of a resistor characterized by a “small” value 

of resistance for the “closed-state” and a “large” value for the 

“open-state”. However, in both the ideal switch and the two-

valued resistor models, the system’s admittance matrix needs 

to be updated and re-factorized after each switching state 

change (e.g. [3,4]). 

Within the context of real-time simulations, updating the 

admittance matrix imposes additional computational burden to 

solution algorithms that need to be executed within a 

determined time window. Another critical example refers to 

the off-line simulation of power electronics converters 

characterized by a large number of switches (e.g., Modular 

Multilevel Converters (MMC) used in HVDC systems). 

Indeed, high switching frequencies, combined with the high 

number of switching devices, result in prohibitive 

computational times [5]. As a consequence, in both of the 

above-mentioned cases, the admittance matrix re-factorization 

represents a major obstacle. 

A possible approach to circumvent this problem is the use 

of modeling techniques that keep the system admittance 

matrix constant (e.g., [6,7]). To this end, discrete circuit 

models for switching devices were proposed [1,8,9]. The basic 

idea is that the switch could be represented by an inductance 

when its state is ‘closed’ and by a capacitance when its state is 

‘open’. As a consequence, the discrete switch model is 

represented by an equivalent conductance (Gs) in parallel with 

a current source controlled by the so-called history term (e.g., 

[4]). The consequence of such a representation is an approach 

for the circuit solution called Fixed Admittance Matrix Nodal 

Method (FAMNM) [10]. In this category of solvers, the 

discrete-time switch conductance Gs is kept constant during 

switches state-transitions, the change of the switches state 

affects only the value of the current source which does not 

appear in the circuit admittance matrix. On the other hand, 

such a switch representation introduces artificial resonance 

frequencies that produce unreal transients [2,6]. 

Solutions to solve this problem have been proposed in the 

literature. In particular, a damping resistance can be added in 

series to the discrete-time switch model [11]. However, this 

approach increases the model complexity and, also, poses the 

problem of the optimal choice for the value of such a damping 

A 



resistance. 

Another more consistent approach to solve this problem is 

the optimal selection of the Gs parameter. One possibility is to 

consider an a priori value for Gs and, then, find the 

corresponding optimal value by comparing the simulation 

results with benchmark ones (i.e., obtained by off-line 

simulations where the switches are represented by ideal 

models) in order to minimize the relevant errors [2]. However, 

such an approach provides solutions that require specific 

tunings and, also, is impracticable for networks including a 

large number of switches, for which the number of possible 

permutations becomes prohibitively large. 

Within this context, this paper presents a new method to 

find the optimal Gs value. The proposed method is based on 

the minimization of the Euclidian distance between the 

eigenvalues of three nodal admittance matrices. The first 

matrix refers to the circuit where discrete-time switch models 

are accounted for. The second and third matrices are 

associated with the circuit with ideal switches in ‘open’ and 

‘closed’ states, respectively. 

The structure of the paper is as follows. Section II presents 

the mathematical model describing the FAMNM. Section III 

illustrates the proposed method to find the optimum value for 

the discrete-time switch conductance. Section IV presents a 

validation of the proposed method by making reference to two 

test cases. Finally, Section V concludes the paper with the 

final remarks and potential deployment of the proposed 

method. 

II.  FAMNM REPRESENTATION OF THE SWITCH 

The idea of FAMNM is the discrete-time representation of 

the switch with a constant impedance model [1,8-10]. Such a 

model assumes that the equivalent model of the ideal switch is 

piecewise linear and could be represented by a capacitance 

when it is open and an inductance when it is closed. The 

inductance and capacitance are represented, in a discrete form, 

by a conductance in parallel with a current source. In order to 

set the value of the conductance for both switch states, in case 

the backward-Euler numerical integration method is used, the 

following constraint should be satisfied: 
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where Cs and Ls are the discrete-time switch capacitance and 

inductance respectively, and ∆t is the simulation time-step. 

For other numerical integration methods, a similar approach 

could be applied to find the Gs value. 

As a consequence of this representation, the relevant model 

is composed of a constant conductance and a current source 

(see Fig. 1). As a function of the switch on/off state, the value 

of the current source is updated at each time-step based on the 

switch current/voltage. The advantage of this method is that 

the value for the switch conductance Gs is fixed irrespective of 

the switch on/off state. As a result, the nodal admittance 

matrix will remain unchanged during switching operations as 

the switch state only affects the value of the shunt current 

source. The current source associated with the switch at the 

simulation step n+1 is defined as [1]: 
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Fig. 1. Ideal switch (a) and corresponding discrete-time model (b). 

 

An important issue regarding the FAMNM is the 

appropriate selection of Gs since its value affects the accuracy 

of the approximate switch model and, as a consequence, it 

affects the overall model accuracy [1,2]. According to [1], one 

approach for determining Gs is to select Cs and Ls equal to the 

corresponding real switch parameters. Then, the values of Gs 

and ∆t could be determined based on (1). However, the main 

drawback of this approach is that the required simulation time 

step might become extremely small resulting in an increased 

computational time [1]. 

As already stated in the introduction, a different procedure 

refers to the assessment of an optimal Gs value by means of a 

trial-and-error process where benchmark results are obtained 

by means of off-line simulations carried out by adopting ideal 

switches. However, for cases characterized by a large number 

of switches, such an approach requires non-negligible pre-

computation efforts.  

III.  PROPOSED METHOD 

A.  Network Modeling 

Generally, there are two main types of solution methods 

currently used in the field of power system, power electronics 

and electronic circuit simulations [12]: (i) modified nodal 

analysis (MNA) and (ii) State-Space (SS) approach. In this 

study, in order to formulate the network equations, MNA is 

used. Compared with the state-space method, MNA provides a 

more straightforward way of formulating the network 

equations [12]. The MNA formulation is expressed as 

 

     n n nA x b   (3) 

 

where matrix [An], in the discrete time domain, is formed by 

the discrete representation of the network elements; [xn] is the 

vector of unknown network’s node voltages and branch 

currents; and [bn] is a vector composed of the independent 

sources and current history terms related to the network 

components.  In each iteration, the unknown vector [xn] is 

calculated and, then, the vector [bn] is updated. It is worth 

noting that representing switches with FAMNM allows to 
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keep [An] fixed during switching transitions.  

In order to solve equation (3) in discrete form, a numerical 

integration method should be used. Several numerical 

integration methods can be applied to solve differential 

equations. Among them, forward Euler, backward Euler and 

the trapezoidal methods are the most common in power 

system applications [13]. The trapezoidal rule can cause 

numerical oscillations under certain conditions due to the 

neglected terms [14]. In comparison to the trapezoidal method, 

backward Euler rule gives better damping to numerical 

oscillations introduced by switches [1]. In this paper, we have 

adopted the backward Euler method. 

In view of the use of the MNA, all the relevant network 

components should be discretized to form the so-called nodal 

equations [14,15]. While the behavior of power system 

variables is continuous in time, this approach introduces the 

concept of “discrete solution”. Namely, the solution of the 

electrical circuits’ differential equations is obtained in discrete 

time steps. Thus, models of system elements should be 

formulated by means of their discrete representation. To this 

end, lumped elements (RLC) are represented by their discrete 

companion models composed of an equivalent resistance in 

parallel with a current source indicating the history terms 

[15,16]. The values of the equivalent resistance and the current 

source are determined based on the applied numerical 

integration method. 

Concerning the case of transmission lines, one of the most 

popular solutions is given by the so-called Bergeron model 

[17]. It allows a straightforward representation of constant 

(frequency-independent) transmission line models [4] and, 

with some adaptations, it can also be applied to the case of 

frequency-dependent transmission lines [18]. As well known, 

this approach is based on a circuit representation of the 

telegraphers’ equations where each line termination is 

replaced by means of a lumped impedance in parallel with a 

controlled current or voltage source. 

B.  Proposed method for the optimal assessment of discrete-

time switches conductance 

The proposed method is based on the minimization of the 

changes of nodal admittance matrix eigenvalues [An] 

introduced by the discrete-time switches. In particular, it is 

based on the minimization of the Euclidian distance between 

the eigenvalues of the network admittance matrix based on 

FAMNM and those associated with the admittance matrices of 

two reference networks corresponding to the two states of the 

switches (on and off). To this end, the following procedure is 

applied (note that, for the sake of clarity, we are making 

reference to a circuit with a single switch; the procedure can 

be straightforwardly extended to multiple switches). 

First, the eigenvalues of the nodal admittance matrices, 

assumed all of rank n, corresponding to (i) FAMNM method, 

(ii) ideal switch in ‘on’ state, and (iii) ideal switch in ‘off’, are 

calculated. Namely, 
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where [ ]p

nA  , [ ]c

nA , and [ ]o

nA are the nodal admittance 

matrices when the switch is represented by FAMNM, ideal 

switch  in ‘on’ state, and ideal switch in ‘off’ state, 

respectively.   p

i sG  ,
c

i , 
o

i  indicate respectively the  

corresponding eigenvalues for each nodal admittance matrix. 

It is worth noting that  p

i sG is a function of the value of Gs 

whereas, 
c

i  and 
o

i  are fixed. 

 After sorting the eigenvalues order, the squared Euclidian 

distances for each eigenvalue are calculated as: 
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In these equations,  c

i sG and  o

i sG
 

indicate, as a 

function of Gs, the squared Euclidian distances between the i
th
 

eigenvalue of [ ]p

nA
 
and the corresponding one of [ ]c

nA
 
and 

[ ]o

nA , respectively. Then, the overall distance is calculated as: 
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Therefore, it is possible to define an objective function as 

the sum of all normalized distances ( , si G ): 
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Note that the normalization is done in order to give the 

equal weight to all eigenvalues taking part in the objective 

function. The optimum Gs value is defined as the one that 

minimizes the objective function (10), namely: 

 

   * arg min
ss G sG G   . (11) 

 

In order to verify the correspondence of the minimum of 

the objective function (10) with the best accuracy of the circuit 

simulation, an error function has been defined. It includes 

time-domain switch voltage and current waveforms 

subsequent to switch state transitions (in particular, 

subsequent to pairs of ‘on’-‘off’ transitions). Indeed, as it is 

stated in [1], switch current error in ‘off’ state is proportional 

to Gs, whereas, switch voltage error in ‘on’ state is inversely 



proportional to Gs. This specific property has been exploited to 

define the error function. In particular, the following 

procedure has been adopted. The switch-current error is 

calculated as the difference between the instantaneous values 

of the switch current given by the FAMNM solver and the 

current provided by a reference simulation performed, in our 

case, using the EMTP-RV simulation environment [15,19-20] 

where the switch is considered as an ideal device. It is worth 

noting that this error is calculated in the time window when 

the switch is ‘off’. The same procedure is considered to 

calculate the switch voltage error in the period when the 

switch is ‘on’. The switch current and voltage errors,  I

sE G  

and  V

sE G , are then given by 
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where T is the time window where the switch-state changes 

are observed. Discrete variables  s k
i G  and  s k

v G

correspond to the discretized instantaneous values of switch 

current and voltage when the switch is represented by its 

approximate model and, thus, they are function of Gs. Discrete 

variables 
*

ki  and 
*

kv  are the corresponding discretized 

instantaneous switch current and voltage obtained from 

references simulations where the switch are represented as 

ideal devices. As a consequence, it is possible to define an 

overall error function as:  
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An additional way to justify the proposed objective 

function is to consider switch losses when they are represented 

by using the FAMNM approach. To this end, the switch losses 

in ‘off’ and ‘on’ states can be straightforwardly calculated as 

follows: 
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where T is the time window where the switch-state changes 

are observed. Discrete variables  o

s k
i G  and  o

s k
v G

correspond to the discretized instantaneous values of switch 

current and voltage when the switch is represented by its 

approximate model and its state is ‘off’.  c

s k
i G  and  c

s k
v G

are switch current and voltage when the switch state is ‘on’. 

The total switch losses as a function of Gs are calculated by 

adding the normalized values of the ‘on’ and ‘off’ states as 

formulated in (17). It is worth observing that, the best Gs value 

is the one that minimizes this losses function. 
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In the next section, we will show that the optimal Gs value 

provided by (11) corresponds to the minimum of the error 

function (14) and losses function (17), proving that the 

proposed approach satisfies these two criteria at the same 

time.  

IV.  VALIDATION 

In order to verify our proposed method, two simulation 

cases are considered. The first simulation refers to an electric 

circuit composed of RLC elements and a switch. The 

schematic diagram of the considered circuit is shown is Fig. 2. 

This circuit is simulated within the EMTP-RV simulation 

environment and the obtained results are considered as the 

benchmark ones. In addition, the circuit equations are also 

formulated and numerically solved by the procedure 

mentioned in Section III-A, and implemented in MATLAB. 

The numerical integration method and the relevant integration 

time-step have been chosen to be the same in both EMTP-RV 

and FAMNM numerical simulations (i.e., backward-Euler and 

t=4 s for the integration method and time step respectively). 

A.  Simple RLC circuit test case 

For the circuit shown in Fig. 2, the nodal admittance 

matrices for the cases where the switch is represented by 

FAMNM, ideal switch in ‘on’ case, and ideal switch in ‘off’ 

case are formed. Then, according to the proposed method, the 

objective function is calculated. In order to calculate the error 

and losses functions, the following switching transition is 

considered: the switch is in open position and it is closed at 

t=10 ms. Then, it is opened again at t=25 ms (see Fig. 3).  For 

all values of Gs (i.e., 0 1sG  ), equations (10), (14) and (17) 

are calculated. The objective function together with 

corresponding error and losses functions are shown in Fig. 4. 

As it can be clearly observed, all the three functions have their 

minimum when Gs is equal to 0.28.  

 

 
Fig. 2. Schematic representation of first test case composed of RLC elements 

and a switch. 
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Fig. 3. Reference waveforms of switch current and voltage for two switching 

transitions: open-close-open. 

 

 
Fig. 4. Objective, error, and switch-losses functions for the case of the RLC 
test case (Fig. 2) with variable Gs. 

 

B.  Transmission line test case 

The second simulation example refers to a network 

composed of a single-conductor transmission line which is 

represented by using a constant-parameter model [4]. Such a 

model has been chosen in order to show the robustness of the 

proposed method even for simulations involving propagation 

along transmission lines (indeed, the presence of the Gs is able 

to largely affect the consequent electromagnetics transients). 

The line ends are terminated on high resistances. The network 

schematic is shown in Fig. 5. 

 

 
Fig. 5. Schematic representation of the second test case composed of a single-

conductor transmission line and a switch. 

 

By applying the same procedure for 0 1sG  , the 

objective, error, and losses functions are calculated (see 

Fig. 6). As it is shown on Fig. 6, these three functions exhibit 

the same behavior as for the previous case, with a minimum 

occurring for a value of Gs equal to 0.055.  
 

 
Fig. 6. Objective, error, and switch-losses functions for the case of 

transmission line test case with variable Gs. 

 

With reference to the second test case, Figs. 7 and 8 

illustrate the time-domain simulations of the voltage at the end 

of the line and the switch current at the beginning of the line 

for different values of Gs including the optimal one previously 

identified (Gs
*
=0.055). The following observations can be 

made: (i) the value of Gs affects the accuracy of the simulated 

model drastically (ii) the best match between reference and 

FAMNM simulations corresponds to the optimal Gs
*
. 

Fig. 4 and Fig. 6 show that the proposed objective function 

could be utilized as an efficient tool to find the optimum Gs 

value without performing the off-line benchmark simulations 

as the effect of Gs on the adopted system model could be 

precisely predicted. This method could also be generalized to 

networks where several switches are placed. 

 

 
Fig. 7.  Time-domain simulated waveforms for voltage at the end of the 

transmission line (second test case) for different values of Gs.  
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Fig. 8. Time-domain simulated waveforms for the switch current at the 

beginning of the transmission line (second test case) for different values of Gs. 

V.  THE EXTENSION TO MULTIPLE SWITCHES 

The proposed method could be generalized for the case of 

networks with multiple switches. 

For the case of a network with N switches, the number of 

possible switching permutations is 2
N
. Therefore, there are 2

N
 

set of eigenvalues of the nodal admittance matrix associated to 

ideal switches representations, namely: 
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where x is the one of possible switches permutations. 

Additionally, the eigenvalues of nodal admittance matrix 

associated to the FAMNM switch representation are function 

of several switches conductances: 
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The squared Euclidian distances associated with all 

eigenvalues have to be calculated for all the possible 

permutations considering the various conductance values as 

reported below: 
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The proposed objective function is then defined based on 

the calculated Euclidian distances as: 
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   (21) 

 

The optimum values of switches conductance are found as 

follows: 

 

   
1 2

* *

1 2 , ,. 1 2, ,... arg min , ,...
s ss s G G s sG G G G    (22). 

 

An approach to reduce the computational complexity of the 

optimal problem stated by (22) is to group the switches with 

identical Gs. This is the case, for instance, of the switches 

representing the three poles of a three phase breaker or to 

switches located in topological proximity. 

However, it is worth noting that further investigations are 

needed in this respect in order to reduce the computational 

complexity of the problem formulated by (22). 

VI.  CONCLUSION 

In this paper, a new method to find the optimum value of 

discrete-time switch conductance has been proposed. As 

known, the value of this parameter should be chosen in a way 

to minimize the errors introduced by the approximate 

representation of the discrete-time switch model. 

The method is based on the minimization of the Euclidian 

distance between the eigenvalues of the network admittance 

matrix based on FAMNM and those associated with the 

admittance matrices of two reference networks corresponding 

to the two possible states of the switches. To prove the 

correctness the proposed method, a comparison between the 

considered Euclidian distance and other error functions is 

analyzed and discussed. By making reference to two different 

test cases (i.e., a simple RLC circuit and a system that includes 

a transmission line), the proposed method has been proven to 

be robust in identifying the optimal conductance value of the 

discrete-time switch model that minimizes: (i) the differences 

with reference-model current/voltage waveforms, and (ii) 

losses on the discrete-time switch conductance. 

The proposed method can be therefore used as an efficient 

tool to find optimal Gs values without performing off-line 

benchmark simulations as the effect of Gs on a given system 

could be precisely predicted. 

It is finally worth noting that the method proposed in the 

paper could also be generalized to networks with multiple 

switches by extending the proposed objective function to an 

arbitrary number of switches. 
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