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Abstract—This paper presents the modeling of a induction
machine soft-starter interconnected to a power cable configura-
tion for transient analysis through frequency domain technique
using circuit equivalents. The entirely network is partitioned
into linear and nonlinear subnetworks. In this work, the power
cable and the induction machine are taken as linear elements
and their equivalents are obtained. Meanwhile, the soft starter
device, composed by a silicon-controlled rectifier (SCR), is taken
as a non linear element. An iterative procedure is conducted
at the interconnected bus for all subnetworks. Afterwards, the
whole network including equivalent elements, is solved via the
Numerical Laplace transform. The methodology is able to provide
steady and dynamic state signals. Results of a case of study were
corroborated with PSCAD simulations.

Index Terms—Electromagnetic transients, Laplace transforms,
frequency domain analysis, soft-start/induction machine, power
cables.

I. INTRODUCTION

COMMONLY, electric power networks are composed
of several dynamic elements with complex interactions

among them. The accuracy in the modeling of the elements
of a power network depends on the nature of the phenomenon
and study requirements to perform as well as the chosen
methodology. The analysis and modeling of these networks
often require the use of equivalent and/or simulation tools
representing the system behavior in a manner suitable for
the required studies. For instance, in studies as a power-
flow, simplified models are enough for the analysis. While,
in short-term high-frequency events analysis detailed models
of individual elements are indispensable, including saturated
and switching elements.

Time domain (TD) [1], frequency domain (FD) [2], and to
a lesser extent hybrid domain analysis [3] are generally the
main methodologies (mature and well-proven) used to simulate
electric power networks. TD methods consist on a sequential
solution scheme of integro-differential equations; the nature
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of the methodology allows the straightforward inclusion of
switching and saturated elements. While, elements such as
power cables, transmission lines and transformers hold a high
frequency dependence being the FD the ideal methodology
for the analysis. The methodology used in this paper belongs
to the class of hybrid techniques mixing time and frequency
domain models overcoming the intrinsical errors that present
the techniques alone.

In this work, linear frequency dependent networks are
modeled as Norton/Thevenin equivalents in FD and nonlinear
networks are modeled in TD. A Newton type procedure is
used to join both methodologies. The response of the whole
network is evaluated in the frequency domain, but time domain
solution is found using inverse transformation algorithms
such as the Numerical Laplace Transform (NLT). The hybrid
time/frequency technique leads to efficient, robust periodic
dynamic state solutions for the entirely network.

In this paper the hybrid methodology of the frequency do-
main equivalents (FDE) is applied to an AC voltage-controlled
based on soft starter induction machine interconnected to an
undersea power cable. AC voltage-controlled soft starters offer
many advantages over conventional starters. By reducing the
applied voltage; smooth acceleration and energy savings are
achieved [4]. Also by this way, the core and stator losses can be
reduced. Nevertheless, harmonic losses in the motor and SCR
are introduced. Computational time savings are achieved using
the FDE methodology especially on higher density networks,
as the case of study.

The main sections of the paper are organized as follows.
In section II, the basic concepts of the methodology are
presented. It is also addressed, in this section an illustrative
example. In section III, the case of study is presented. In ad-
dition, the optimization of the soft start AC voltage controller
used is explained. Conclusions are drawn in section IV.

II. BASIC CONCEPTS

The main concepts of the hybrid methodology used to sim-
ulate the AC-voltage controlled soft-started induction machine
connected to an offshore electric network are addressed in this
section. It is worth mentioning that the methodology presented
in this section is non-unique for this kind of networks and can
be extended and used for any network configuration.

A. Solution Procedure

• The network under study is partitioned at the nodes of
interest or arbitrarily in N-subnetworks.



• Linear loads and frequency-dependent elements establish
one or more subnetworks.

• Nonlinear elements with high participation in the net-
work and/or specific nonlinear elements formed other M-
subnetworks.

• Assumed an initial flat voltage in each partition buses
(Vk,old = 1pu).

• FD Norton equivalent networks are obtained for each
linear/frequency-dependent N-subnetwork [2].

• The Jacobians are obtained at M-nonlinear (time variant)
elements/subnetworks from their characteristic differen-
tial equations through local TD technic.

• Linear and non-linear Jacobians are added. A new voltage
(Vk,new) is obtained by a Newton type procedure, this
process be carried out until a default convergence is
reached.

• Once the voltages/currents at the interface nodes are
obtained, one can move deeper into each subnetwork for
calculating any internal variable under interest.

• The inverse NLT, is used to transform signals from FD
to TD. For further details about the LT please see the
appendix I.

The solution methodology above presented is diagrammati-
cally outlined in Fig. 1 accompanied with the main equations.

B. Illustrative Example
To validate the proposed methodology this section provides

an illustrative example. Fig. 2 shows a single-phase bridge-
rectifier supplied by a 120V, 60Hz source (vs). The values of
the linear time invariant elements are: R = 500Ω, and C =
126.2µF . In addition, the diode resistances are 0.01Ω and
1×105Ω, for on and off states, respectively.

According to the previous section, the network is partitioned
in 2 subnetworks. Where, the subnetwork 1 correspond to the
nonlinear element (diode D) and the subnetwork 2 to the linear
time invariant elements (R and C). After, the linear Jacobian
is obtained from the subnetwork 2 (JL).Later in all nodes of
partition, it is assumed a start voltage (VA,old).The Jacobian of
the nonlinear network (JNL) and the current INL) are calculated
using a local TD solution. While, the linear subnetwork current
is calculated with IL = JLVA,old . After all, a Newton type
procedure is conducted until the convergence is reached. A
simulation of 0.9s was performed and the signals obtained
by the frequency domain equivalent (FDE) methodology at
the partition node (VA) were obtained and compared against
those obtained by PSCADr to corroborate the accuracy of
the methodology. Voltages and currents are shown on Fig. 3
(a) and (b), respectively. A good approximation is observed
between the PSCAD and FDE methods throughout the simu-
lation time. The calculated percentage of error in the voltage
is 0.3164% and occurs at the moment when the diode change
from on to off state (see the zoom on Fig. 3 (a)). Although
this is an illustrative example the reader can realize the ability
and accuracy of the methodology.

III. CASE OF STUDY

Fig. 4 shows the schematic diagram of the case of study.
Physically, it consist of two offshore platforms interconnected
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Fig. 2. Single-phase bridge-rectifier.

through a 20km undersea power cable. At both ends of the
power cable a linear transformer is connected (for simplicity
in this paper, saturation is not taken into account, but the
methodology can be readily extended to overcome this kind of
effects). Electrical energy is produced in one of the platforms
and delivered to 20km far away on the other platform where
a group of linear loads and a 500hp induction machine (IM)
are connected. The IM is connected to the network by an AC
voltage control based on SCR. Following the methodology
described above, the network is partitioned into subnetworks
as seen on Fig. 4. The FDEs are calculated for linear and
frequency dependent elements. While, the nonlinear elements
are solved by a local TD (see Fig. 4b).
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Fig. 3. Signals comparisons FDE vs PSCAD: (a) Voltage at the partitioned
bus VA and (b) current through the diode iNL.
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Fig. 4. Case of study: (a) Full representation, (b) subnetwork partitions and
their equivalents.

A. Subnetwork 1: Power Cable

The first subnetwork (Sn1) is composed by three main
elements: an excitation source, two transformers connected at
each end of the cable, and the power cable at itself. The source
and the transformers are taken as linear elements while the
power cable belongs to the frequency dependent elements.

The model of the power cable is based on of coaxial
loops [5]. Then, the series impedances are calculated by the
following set of loop equations.

−

 dV1
dx

dV2
dx

dV3
dx

=

Z11 Z12 0
Z21 Z22 Z23
0 Z32 Z33

I1
I2
I3

 . (1)

Instead of the loop voltage and current obtained through
Eq. 1, are necessary currents and voltages of the core, sheath,
and armor. By introducing appropriate conditions in Eq. 1
terminals necessary signals are obtained by [1]:

−

 dVcore
dx

dVsheath
dx

dVarmor
dx

=

 Zc Zcs Zca
Zsc Zs Zsa
Zac Zas Za

 Icore
Isheath
Iarmour

 . (2)

The power cable characteristic impedance (Zc) and propaga-
tion function (γ) are given by [1]:

Zc(ω) =

√
Z(ω)

Y (ω)
γ(ω) =

√
Z(ω)Y (ω). (3)

The two ports representation for the power cable is given
by [6]: [

Ikm
Imk

]
=

[
A −B
−B A

][
Vk
Vm

]
, (4)

where

A = Yc coth(γ(ω)l), B = Yccsch(γ(ω)l),

l is the length of the power cable and the subscripts k and m
represent both ends of the power cable (see Fig. 4). Further
details of the power cable modeling can be found on [1].

Eq. 4 is arranged to include the transformers and excitation
source [

Is
Im

]
=

[
YT 1 +A −B
−B A+YT 2

][
Vk
VA

]
, (5)

where Is is the current of the excitation source and YT 1, YT 2
correspond to the linear transformers, whose impedance is
given by ZT 1 = R+ sL. The values used in this paper for the
linear elements where summarised in appendix III. Then a
frequency domain Norton equivalent is obtained to represent
the subnetwork 1.

B. Subnetwork 2: Linear Load

In the receiving offshore platform, a three-phase balanced
linear load is connected to the network via bus (VA). Being
the linear load characteristic equation is:

Z = R+ sL. (6)

The FDEs resulting for each linear or frequency dependent
subnetwork are evaluated during the entire frequency spectrum
(N = T

∆t ). Even though inherent numerical problems such
as aliasing and Gibbs oscillation are presented at the NLT
have been alleviated using data windows and other oscillation
techniques (for further details about the NLT see [8]).

C. Subnetwork 3: Induction Machine

The steady-state representation of an IM is based on the
assumption that the network to which it is connected is
balanced and linear.
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Fig. 5 shows the well-known equivalent circuit for the bal-
ance steady-state behavior of a three phase induction machine.
The single representation is used in phases a,b,c provided
there is only one winding of the field structure.

[
VB
0

]
=

[
Rs + sLs + sLM −sLM

−sLM sLr +
Rr
s′ + sLM

][
Ias
Iar

]
(7)

where s′ is the slip of the IM. The subscripts s and r are
referred to stator and rotor, respectively. For a s′ = 0.5 the
steady-state current of the IM is 1×10−3pu.

However this is not the best approximation when it is needed
to study the performance of the drive during transients [1].
Nevertheless, when it is needed to simulate the induction
machine drive with switching networks, it is not wise enough
to describe the whole drive system through equations for
various modes of operation.

D. Subnetwork 4: SCR
In this subnetwork three SCRs are placed in series with

the IM(see Fig. 6). Due to the behavior of the switching
devices this subnetwork is considered as a nonlinear sub-
network. Respective voltages and currents are obtained by a
local TD procedure that solved the characteristic differential
equations. At each one of the thyristor the current can be varied
from a maximum value (thyristor valves bypassed) to a zero
conduction (thyristor valves open) by varying the thyristor’s
firing angle α within the range 90◦ < α < 180◦.

The SCR is modeled as a low/high resistance for an on/off
state of the thyristors. The resistors are 0.01Ω and 1×105Ω

α = α m a x
E n d

V A - V B ≤ 0 . 2 V AI ≥  0 . 8 I n α = α  α = α - 3 °Y N
NY

V B = V T o f f ( t ) α  I = Y T o f f V BV AI n
Fig. 7. Optimal AC Voltage Soft Start control.

for on/off respectively. The simulation results of the network
with and without the soft start voltage controlled during 0.55s
are shown in Fig. 8. Fig. 8(a), without the soft start device or
full voltage supply shows the current through the stator. It is
noticed that the magnitude of the current is nearly 2×10−3pu
during the first seconds (two times the steady state magnitude).
Also, tends to steady-state slowly. On Fig. 8(b), it is shown the
simulation of the system with the soft start voltage controller.
The maximum magnitude of the current is reached at the
first half cycle regardless the fire angle. After the second
positive half wave the conduction angle is increased by a
determine factor until the specific limit is reached. Even when
the conduction angle changes in each cycle, it is seen that the
steady-state is reached faster than the simulation without soft
star device. The methodology takes into account any signal
change during the simulation time at the partitioned nodes.

E. Optimal AC Voltage Soft Start Controlled

From Fig. 9, it can be seen the behavior of the voltage
and current during the optimal soft started voltage-controller.
The soft started voltage-controlled begins with the thyristors
fired at an α equal to αmax. When the motor is stand still,
the voltage across the nonconducting thyristor is measured
[7]. The voltage across the nonconducting thyristor is the
difference between the excitation voltage (VA) and the emf
(VB). Then, α is decremented by 3◦/cycle while the next
expression is not satisfied (see Fig. 9(a)):

VA −VB ≤ 0.2VA. (8)

The fundamental component of the line current drawn is
monitored every ∆t. If the current is less than the current limit,
then α is decremented by 3◦/cycle until the identification
of the end of soft start is reached as shown in Fig. 9(b).
If the current exceeds the current limit, then α will not be
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Fig. 8. Current at the stator of the IM IS3 (pu): (a)stand alone and (b)AC voltage control.

decremented until the motor accelerates or the current limit
is not seen. The end of the optimal soft start is identified
with the fall of voltage across the nonconducting thyristor to
a value below 80% of the value when the motor is at standstill.
It is worth to say that the decrease of the fire angle can be
done smoother, but for illustration purposes a decrement by
3◦/cycle was selected. Also, empiricism is needed in choosing
the value of 80%. Fig. 7 depicts the optimal AC voltage soft-
start controlled diagrammatically.

Due that the main solution is conducted in FD, harmon-
ics/interharmonics can be directly extracted from the solution
variables without the need of post-processing. Fig. 10 shown
the harmonic content of the current through the stator Is3 ob-
tained during the dynamic-state (when the fall of the voltages
across the SCR is equal or less than 20%). The harmonic
content were normalized with respect to the fundamental
frequency.

IV. CONCLUSIONS

In this paper, a hybrid frequency-time domain methodology
has been used to dynamic state. The network includes an
undersea power cable, an AC voltage control based SCR,

an induction machine, and linear loads. The methodology is
based on numerical Laplace transform and Norton (Thevenin)
equivalents. Although nonlinear elements are solved in local
TD procedure. The main characteristics of the methodology
used in this this network are:

• FDE leads to partition the network in N subnetworks.
• Nonlinear elements are taken in the main program ob-

tained the Jacobians by a time domain local procedure.
• Controls and nonlinearities have been implemented with-

out further details than the elements themselves.
• One can move deeper into each subnetwork for calculat-

ing any internal variable under interest.
• The fact that the numerical Laplace transform and the

DFT are related, allows obtaining either steady or tran-
sient states with a minor modification to the solution
algorithm.

• Harmonics and interharmonics can be directly extracted
from the solution variables without post-processing.

• The methodology can be potentially used in large net-
works, where the dynamics of specifics machines are
under study. Particularly at the start of the machines.
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Fig. 9. AC voltage control parameters phase b : (a) Current through the SCR
iSCR2 and (b) stator voltage vBb.
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• Although in this work is presented a very basic control,
the methodology can allow more sophisticated control
with a minor changes.

APPENDIX A
NUMERICAL LAPLACE TRANSFORM

Linear and frequency dependent elements are represented
as a frequency domain equivalent to obtain the solution of
the entire network. The direct and inverse numerical Laplace
transforms are given by:

Conductor

Insulator 1

Sheath

Insulator 2

0.022m
0.0395m

0.044m

0.0475m

1.0 m 1.0 m

Armor

0.0583m

0.0635m

Jacket

Dimension of the 45kV AC Cable 

Sea water

0.25Ωm

Fig. 11. Undersea Power cable cross section and its geometrical arrangement.

Fk = ∆t
N−1

∑
n=0

fn exp−cn∆t exp− j2πkn/N ,k = 0,1, . . . ,N −1, (9)

and

fn =
expcn∆t

∆t
Re

{
Fkσk exp j2πkn/N

}
,n = 0,1, . . . ,N −1, (10)

where:

fn ≡ f (n∆t), f or n = 0,1, . . . ,N −1, (11a)

fk ≡
{

F(c+ jk∆ω), k = 0,1, . . . ,N/2
F [c+ j(k−N)∆ω], k = N/2+1, . . . ,N −1

}
(11b)

∆t = T/N, (11c)
∆ω = 2Ω/N = 2π/T. (11d)

where σ is a data window. It is worth mention that Eq. 9 and
Eq. 10 are the NLT using regular sampling. For this work, the
Hannin data window was chosen. Also c represents the damp-
ing factor taken by using Wedepohl’s criterion c = ln(N2)/T .
By using a Matlab program one can implement the ifft/fft
routines for Eq. 9 and Eq. 10. For further details about the
numerical Laplace transform please refer to [8].

APPENDIX B
POWER CABLE GEOMETRICAL CONFIGURATION

Undersea power cable geometrical configuration used in the
case of study is presented in Fig. 11 where it is shown the cross
section and the distance between phases.

APPENDIX C
LINEAR ELEMENTS DATA

• Transformers: R = 1Ω and L = 1H.
• linear load: R = 100Ω and L = 1H.
• Induction machine: Rs = 0.3Ω, Ls = 1.5H, Rr = 0.6Ω,

Lr = 1.5H, and Lm = 26.H.
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