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 Abstract--In this paper, a description and comparison of two  

methods for the inclusion of nonlinear conditions in frequency 
domain transients analysis are presented. These methods are the 
piece-wise linear method and the polynomial method. The first is 
based on the superposition principle and is  applied to model 
elements with nonlinear V-I characteristics represented in a 
piecewise-linear manner. The second is a Newton-type 
methodology. The basic idea of this latter method is to 
decompose the complete network into linear and nonlinear 
subnetworks. The nonlinear load is represented by the 
instantaneous current/voltage relation through a polynomial of 
order p. An example involving nonlinear loads in a network is 
presented for illustration of the procedures. 
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I.  INTRODUCTION 

ROCEDURES for computing electromagnetic transients  
can be classified in time domain (TD) and frequency 

domain (FD) methods. TD methods are preferred due to their 
ability to take into account network topology changes and to 
include nonlinear elements.  In contrast FD methods are 
traditionally used for analyzing linear time invariant systems 
with parameters highly dependent on frequency. However FD 
methods are also able to handle, although not directly, time 
variant and nonlinear elements. 
    Nonlinear elements can be handled in the FD using Spectral 
balance type methods [1]-[3], superposition procedures [4]-[8] 
or Newton type methods [9], each one of them with different 
advantages and limitations. In this work a comparison only 
between the two last methods is presented. The reason for this 
is that both methods do not require pre-selection  of the 

                                                           
This work was supported in part by the Mexican National Council of 

Science and Technology.. 
C. Villanueva, P. Moreno, A.Ramírez and J.L. Naredo are with the Center 

for Research and Advanced Studies (CINVESTAV), Zapopan, Jal., México  
(e-mail of corresponding author: pmoreno@gdl.cinvestav.mx). 

P. Gómez is with the National Polytechnic Institute (IPN), Mexico City, 
D.F., México. 

 
Paper submitted to the International Conference on Power Systems 

Transients (IPST2013) in Vancouver, Canada July 18-20, 2013. 

 

harmonic content and can handle any number of nonlinear 
elements. 
    In the superposition procedures time varying conditions 
such as switching maneuvers and faults are treated as initial 
condition problems [4]-[6].   The complete response due to a 
switching operation is obtained by the addition of the system 
response before switching  (initial condition) to that resulting 
from applying a current source that performs the switch 
maneuver. After this time domain waveforms are obtained by 
an inverse transformation procedure. In particular in this work 
the Numerical Laplace Transform (NLT) is employed. On the 
other hand, the inclusion of nonlinear elements such as 
arresters and saturable transformer nuclei  are handled by 
means of a piecewise-linear approximation of the V-I or the 
flux-current characteristics [7]-[8]. The V-I linear 
approximation represents a cascade connection of series 
circuits formed by a resistance, a voltage source and a switch. 
Once this representation is obtained, the procedure is reduced 
to a series of sequential switching maneuvers. 
    Alternatively to the above, FD transient simulation of a 
network including nonlinear elements can be performed using 
Newton-type methods [9]. Basically, in this kind of methods 
the linear and nonlinear parts of the network are treated 
separately and a current mismatch at the node joining both 
sub-networks is defined. A nonlinear load is represented by 
the instantaneous current/voltage relation through a 
polynomial of order p.  Current entering the linear subnetwork 
should be equal to that entering the non-linear part. The 
currents sum equation at the joining node is linearized and a 
recursive procedure is developed to find the node voltages. 
The Jacobian of the linear part is a known matrix whereas the 
Jacobian corresponding to a nonlinear element is calculated 
numerically via small perturbations of  the input voltage at the 
connecting node. The corresponding nonlinear current is 
calculated via NLT operations. 
     An example involving nonlinear loads in a network is 
presented for illustration and comparison of the above 
procedures. The example consists of an energization of a 3-
phase transmission cable with  surge arresters  connected at 
the receiving end. 

II.  PIECE-WISE LINEAR METHOD  

A. Switching Modeling 

Switching operations produce changes in network topology 

P



that turn the network into a time variant system precluding, 
apparently, the use of frequency domain methods. However 
the Superposition Principle can still be applied to overcome 
these problems [4]-[6].  

In the case of a closure maneuver the initial condition of 
the switch is that of an open circuit. Invoking the Substitution 
Theorem this condition is equivalent to the connection of a 
voltage source equal to the potential difference between the 
switch terminals. Switch closure is performed by means of the 
series connection of another voltage source with equal 
magnitude but opposite polarity, as shown in Fig. 1(a). 
Considering a closure time 0ct   the voltage source VswC 

required to close the switch is given by the numerical Laplace 
transform [8] 

 ( ) ( )swC sw cV NLT v t u t t                           (1) 

where vsw(t) is the time domain voltage between the switch 
terminals, supposing it open for all the simulation period.  

On the other hand, for the switch opening maneuver a short 
circuit  initial condition is considered, such that the current 
flowing through its terminals can be represented by a current 
source. Opening of the switch is then performed by a shunt 
connection of another current source of equal magnitude but 
opposite direction as shown in Fig. 1(b). Considering the first 
zero-crossing time tzc following a specified opening time, the 
current source IswO required to open the switch is given by 

 ( ) ( )swO sw zcI NLT i t u t t                         (2) 

where isw(t) is the time domain waveform of the current 
flowing through the closed switch for the whole observation 
time.  

When using the nodal method to deal with networks ideal 
voltage sources can not be employed to simulate switch 
closures. To overcome this restriction the injection of voltage 
VswC  must be accomplished by means of a Norton equivalent 
with current source given by 

swC
swC x swC

x

V
I G V

R
                           (3) 

where Rx (Gx) is the resistance (conductance) needed to 
perform the source transformation; Rx (Gx) must be small 
(large) to approximate an ideal source or it can take some 
particular value for representing a contact condition.  

The switch model suitable for simulating closures and 
openings using the nodal method is shown in Fig. 2. The 
corresponding Norton injection current Jsw and conductance 
are given by 
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Fig. 1.  Switching: (a) closure, (b) opening. 
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Fig. 2. Switch model: (a) ideal, (b) Norton equivalent. 
 

After the network is solved for a set of N complex 
frequencies sn = c+jωn , each node voltage in the time domain 
is obtained through a numerical inverse Laplace transfor-
mation [7],[8],[10]: 

 i iv INLT V                             (5) 

where Vi = [ Vi,1  Vi,2 … Vi,N ] is the voltage at the ith node 
sampled at the complex frequencies s1, s2, …, sN ; vi is the time 
domain voltage sampled at time values t1,t2,…,tN. 

The complete voltage response due to a switching 
operation is obtained by the addition of the system response 
before switching  (initial condition) to that resulting from 
applying the current source that performs the switch 
maneuver.  

When analyzing several maneuvers in a single simulation, 
the number of superposition steps equals the number of 
events, and all the events must be ordered sequentially with 
increasing time. 

 
B. Nonlinear Elements Modeling 

The inclusion of non-linear elements in frequency domain 
techniques is performed by approximating their non-linear 
characteristic using a piece-wise linear form. Once this is 
made, the simulation procedure is reduced to a sequence of 
switching operations [7]-[8]. 

Figure 3(a) shows the v-i characteristic of a non-linear 
element approximated using a piece-wise linear form and Fig. 
3(b) shows the circuit model. The function of the switches is 



to connect or disconnect resistances RXn and sources VXn in 
such a way that the correct Thevenin circuit is connected to 
the network, this is, at any time instant the network "sees" a 
resistance Rn in series with a voltage Vn, depending on the 
value of the voltage vjk. 

Consider the change from the n-1 zone (slop) to the n zone. 
The circuit needed to perform the maneuver is shown in Fig. 
4. In order to obtain the required Thevenin equivalent formed 
by Rn and Vn, the connection of RX,n and VX,n should comply 
with 

1 1 , ,/ / /n n X n X n n nV R V R V R                (6a) 
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Fig. 3.  Piecewise linear approximation of a nonlinear element by means of 
N  linear segments: (a) v-i characteristic, (b) corresponding circuit. 
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Closure and opening of the switches in Fig. 3(b) is 
performed according to the method described in Subsection 
II.A. In both cases, the artificial current source needed for the 
superposition is given by the direct numerical Laplace 
transformation: 
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j

k

Vn-1 VX,n

Rn-1 RX,n

+

‐

vjk

 
Fig. 4.  Circuit for the change from slop n-1 to slop n. 
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where tc,n defines the time in which the element goes from 
zone n-1 to zone n for the closure case, or from zone n to zone 
n-1 for the opening case. 

It is important to note that in the simulation procedure 
switch n cannot close if switch n-1 is still opened, and it 
cannot open if switch n+1 is still closed. To accomplish this, 
the time step t must be small enough to prevent jumps 
between non-contiguous segments. 

 
C. Network Solution. 

Consider the three-phase transmission line represented in 
Fig. 5. Using a two port admittance model for the transmission 
line, the switch model and superposition, results in the 
equivalent network shown in Fig. 6 for computing the effects 
of switch maneuvers and the non-linear elements connected at 
the line receiving end. The network nodal equation can be 
expressed as follows: 
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where  Gsw is a diagonal conductance matrix that represents  
the three phase switch condition, Ys is the source admittance;  

1
, ,X n X n

G R , Y22, Y23, Y32 and Y33 represent the admittance 

model of the transmission line.  
The values of the elements of Jsw, Gsw, Isw,n and GX,n change 

depending on the maneuver and for each switching a complete 
frequency scan is performed.  
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Fig. 6. Network Model. 

III.  POLYNOMIAL MODELING OF NON-LINEAR ELEMENTS  

The basic idea is to split a complete network in a linear and 
a nonlinear part. For example consider again the transmission 
system shown in Fig. 5 where the voltage sources and the 
transmission line form the linear part and the surge arresters 
the nonlinear part. 

To solve for the voltages of the complete network the 
Newton's method is invoked.  Under current balance 
condition, the current I3L entering the linear part should be 
equal to the current I3NL entering the nonlinear part, this is  

3 3 3 3( ) ( ) 0L NL I V I V                             (9) 

however since the network is split a mismatch will result:  

3 3 3 3 3 3( ) ( ) ( )L NL  I V I V I V                      (10) 

Linearizing (10) around a voltage 3
kV  

   3 3 3 3 3 3 3 3( ) ( )k k
L NL     I V I V J J V V     (11) 

where 3 3' ( )k
L LJ I V  and 3 3' ( )k

NL NLJ I V correspond to the 

Jacobians for the linear and nonlinear parts, respectively.  

By computing the root of (11) a Newton recursive scheme 
to calculate new voltages can be written 

  11
3 3 3 3( )k k k

L NL

    V V J J I V              (12) 

A.  Linear Network 

According to Fig. 5, the linear network can be represented 
as 
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where I3L corresponds to the current entering the linear 
network and Iin to the nodal currents within it, respectively; 
their corresponding voltages are VL  and Vin ; Yin,in, Yin,3, Y3,in 
and Y3,3 are formed by linear elements. 

Solving for I3L from (13) yields 

 1 1
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   I Y Y Y Y V Y Y I       (14) 

From (14) it can be written  

3 3L L  I J V                             (15a) 

where the linear Jacobian at the complex frequency 

n ns c j    is given by 

1
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 J Y Y Y Y                  (15b) 

Also from (14) and (15b) it can be written 
1

3 3 3 3, ,( )k k
L L in in in in

 I V J V Y Y I                 (16) 

B.  Nonlinear Network 

For the calculation of NLJ , the nonlinear load is taken as an 

input/output relation where the input is the voltage at its 
terminals and the output corresponds to its nonlinear current 
(see Fig. 7). For the sake of clarity consider a single nonlinear 
load whose instantaneous current/voltage relation is 
represented through a polynomial of order p [9]. 

( ) ( ) ( )p
NLi t v t v t                          (17) 

Given a set of N voltage points in the TD 
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Through (17) a set of current points can be determined 
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 Then 3
k

NLi  can be  converted to the FD through a NLT 

operation [8] 

 3 3 3( ) NLTk
NL NLI V i                      (18c) 

For the nonlinear subnetwork the calculation of JNL should 
be performed via perturbations [9]. To this end first consider a 
vector of voltages V0 in the frequency domain, to which a 
small perturbation ε is added to yield vectors V1,...,VN as 
follows 
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From (19) it can be obtained the following matrix of vector 
differences  

 1 2 N      V V V V U        (20) 

where 0n n   V V V  for n = 1,2,...,N and U is the identity 

matrix of dimension N. 
Each vector Vn can be transformed to the TD through the 

inverse numerical Laplace transform  

 INLTn nv V                           (21) 

Using vn with (17) and (18) an output In is determined.  
Calculating the N+1 current vectors the following vector 
differences are obtained 

 1 2 N    I I I I                    (22) 

where 0n n   I I I  for n = 1,2,...,N. 

Finally with (20) and (22) the nonlinear Jacobian is written 
as 

/NL  J I                                  (22) 



iNL

v
+

_
 

Fig. 7.  Nonlinear load. 

IV.  APPLICATION EXAMPLE  

In this example, consider the sequential energization of a 
400 kV 3-phase transmission cable shown in Fig. 8. A surge 
arrester is connected on each phase at the receiving end of the 
cable. The parameters of the cables are shown in Fig. 9, the 
data for the source and switch are 0.1SR   ,  LS = 0.1 H and 

0.01SWR   . Closing times for phases A, B and C are 3, 5 

and 9 ms, respectively.  
For the piece-wise linear method the arresters are 

represented as nonlinear resistances with v-i curves 
approximated with five linear segments whose values are 
presented in Table I. 
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Fig. 8.  Underground transmission system. 
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Fig. 9.  Transversal configuration of cable system (a) single cable, (b) 
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TABLE I 
V-I CHARACTERISTIC OF ARRESTER 

 

Voltage (kV) Current(kA) 

480 0.1760 
520 0.3226 
560 0.7626 
600 1.6426 
620 12.6426 

 
 

For the polynomial model, the characteristic v-i curve is 
approximated by the instantaneous voltage/current equation 
(17) with  =3 .666710-3and  =2.25310-7. The power of 
the    polynomial is set equal to 27. 

Figures 10 and 11 show the results obtained with the 
polynomial and the piece-wise model using 256 samples and a 
simulation time of 20ms, these results are compared against 
those from the commercial software PSCAD / EMTDC. 

To achieve an error less than 110-9 the computation time 
required for the polynomial model was 25.419039s while for 
the piece-wise model was of only 0.546713s. This time 
difference is because the piece-wise model required solving N 
matrices of 99, while the polynomial model required the 
calculation of JNL via perturbations and solving a 6N6N 
equations system at each iteration of the Newton's recursive 
procedure. The number of iterations for the first, second and 
third switching in the polynomial method was 3, 11 and 11 
respectively. 

Figures 12 and 13 show the voltage difference error with 
respect to commercial software PSCAD /EMTDC, as shown 
both methods possess an acceptable error.   
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Fig. 10.  Voltage at the receiving end of the core of phase a. 
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Fig. 11.  Voltage at the receiving end of the sheath of phase a. 
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Fig. 12.  Error voltage at the receiving end of the core of phase a. 
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Fig. 13.  Error voltage at the receiving end of the sheath of phase a. 

 

V.  CONCLUSIONS 

In this paper two frequency domain methodologies for 
calculating the transient state of a network including nonlinear 
loads have been revised. Both methods provide acceptable 
results and possess advantages and disadvantages. Both 
methods can handle any number on nonlinear elements at the 
expense of computing time. Due to the size of the nonlinear 
Jacobian the method of polynomial representation is slower 
than the piece-wise method. However this cannot be 
conclusive since the computation time of this latter depends 
not only on the number of samples but also on the speed with 
which the transient waveforms change. Although no 
convergence problems were found in the numerical examples 
performed in this work it is believed that Newton's method  
could present problems with some types of polynomials, 
especially when the polynomial order is very large. 
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