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Application of the MoM-SO Method for Accurate
Impedance Calculation of Single-Core Cables

Enclosed by a Conducting Pipe
U. R. Patel, B. Gustavsen, and P. Triverio

Abstract—EMTP-type simulation programs include dedicated
support routines for computing the series impedance of under-
ground cables as a function of frequency. These routines take
into account the skin effect in conductors but ignore any effect
due to the proximity of the conductors. We introduce a new
technique for calculating the series impedance which accurately
predicts both skin and proximity effect. The method, which is
based on an equivalent surface current representation, is highly
efficient and is applicable to any arrangement of solid and
hollow round conductors. We apply the proposed method, called
MoM-SO, to a system of three single-core cables enclosed in a
conductive pipe, achieving a speed up of more than 2000 times
with respect to a finite elements solver. Time-domain simulation
results demonstrate the influence of proximity effects on transient
overvoltages.

Keywords: Series impedance computation, wideband cable
modeling, underground cables, electromagnetic transients.

I. INTRODUCTION

THe calculation of electromagnetic transients in power
systems [1], [2], [3] requires the ability to model all

network components with sufficient accuracy, taking into ac-
count their frequency-dependent behaviour. For underground
cables, the modeling process starts with the computation of
the per-unit-length (p.u.l) parameters of series impedance and
shunt capacitance. The series impedance is always frequency-
dependent due to skin effect in conductors and earth. Skin
effect is easily accounted for by use of analytical formulae
[4], [5]. In the case of three-phase cables, pipe type cables,
and closely packed single-core cables, the series impedance is
further affected by proximity effects which lead to an uneven
(non-circular) current distribution on the conductors. This
effect has traditionally been ignored since it can be predicted
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only with computationally expensive techniques, e.g. the Finite
Element Method (FEM) [6].

Recently, the authors introduced MoM-SO [7], [8], a new
method which is capable of accurately representing both skin
and proximity effects for systems of solid, round conductors.
This method, which is based on an equivalent surface current
approach [9], is very fast and thus attractive for wide-band
modeling of power cables.

In this paper, we extend the MoM-SO approach to in-
clude hollow conductors, a case not considered in previous
works [9], [7], [8]. We outline the computational procedure
but leave the detailed derivations for a future paper. Hollow
conductors are particularly useful to represent metallic screens
and pipes. Then, we apply MoM-SO to the modeling of
three single-core cables that include a tubular screen and are
enclosed by a conducting pipe. The series impedance of this
seven-conductor system is calculated over a wide frequency
band and the result is validated against a FEM computation.
The impedance is next used as input for the Universal Line
Model (ULM) [10] in order to simulate transient overvolt-
ages on the phase conductors and the metallic sheaths. The
significance of taking the proximity effect into account is
highlighted.

II. SERIES IMPEDANCE COMPUTATION THROUGH A
SURFACE ADMITTANCE OPERATOR

A. Problem description

In this work, we consider the modeling of cables made by
several conductors of circular shape, such as the configuration
shown in Fig. 1. We allow for both solid and hollow conduc-
tors. Solid conductors are used for modeling the phase conduc-
tors but can also be used for representing the individual strands
of a wire screen or of a stranded armoring as in [7]. Hollow
conductors can represent tubular sheath conductors (metallic
screens), enclosing pipes, and hollow phase conductors of oil-
filled cables that include an oil channel. Hollow conductors
can also be used for approximately representing wire screens
and stranded armors, with great savings in computation time.

We let P be the total number of conductors present in the
cable, either solid or hollow, and we denote the potential of the
p-th conductor as Vp. To simplify the notation, all potentials
are collected in a column vector

V =
[
V1 V2 . . . VP

]T
. (1)
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Fig. 1. Three single-core cables inside a conducting pipe (seven conductors).

Similarly, we define the vector of conductor currents

I =
[
I1 I2 . . . IP

]T
, (2)

where Ip is the current flowing in the p-th conductor. The
transmission line equation [11]

∂V

∂z
= − [RRR(ω) + jωLLL (ω)] I (3)

relates V and I through the p.u.l. resistance matrix RRR(ω)
and the p.u.l. inductance matrix LLL (ω) of the cable. Our
objective is to compute RRR(ω) and LLL (ω) for a given set of
frequency values. Once these matrices are available, one can
compute several quantities of interest for cable analysis, such
as positive- and zero-sequence impedance at the operating and
harmonic frequencies. Also, the computed samples can be used
as input parameters for the broadband cable models used in
EMTP transient analysis. In Sec. III we will demonstrate such
usage based on the geometry in Fig. 1.

B. Surface Admittance Operator for Solid Conductors

In order to compute the series impedance of the cable, we
follow the surface approach of [9], which takes as unknown
the electric field on the surface of each conductor. The field
distribution inside the conductors is modelled implicitly with
a surface admittance operator. We first present this concept
for a solid conductor like the one shown in the left panel of
Fig. 2.

We denote the longitudinal electric field on the conductor
surface by E(p)

z (θ), where θ is the angular coordinate shown in
Fig. 2. Motivated by the circular symmetry of the conductor,
we approximate the field distribution with a truncated Fourier
series

E(p)
z (θ) =

Np∑
n=−Np

E(p)
n ejnθ , (4)

where the truncation order Np controls the fidelity of the ap-
proximation. Using the equivalence theorem [12], we replace

εout, µ0

ε, µ, σ

θap

εout, µ0

J
(p)
s

Fig. 2. Application of the equivalence theorem to a solid round conductor.
The conductor (left panel) is replaced by the surrounding medium and an
equivalent current J(p)

s on its surface (right panel). The conductor radius is
denoted with ap.

the conductor with the surrounding medium, and we introduce
an equivalent current J (p)

s (θ) on the conductor surface. This
transformation is depicted in Fig. 2. We let the equivalent
current be expressed in a Fourier series analogous to (4)

J (p)
s (θ) =

1

2πap

Np∑
n=−Np

J (p)
n ejnθ , (5)

where ap is the radius of the conductor. If a suitable relation
between the electric field (4) and the equivalent current (5) is
enforced, the transformation does not alter the electric field
outside the conductor. Such relation is given by a surface
admittance operator [9]. In terms of the coefficients of (4)
and (5), the operator for a round conductor reads

J (p)
n = Y (p)

n E(p)
n , (6)

where the surface admittance coefficients Y (p)
n are given by [9]

Y (p)
n =

2π

jω

[
kapJ ′|n|(kap)
µJ|n|(kap)

−
koutapJ ′|n|(koutap)
µ0J|n|(koutap)

]
. (7)

In (7), J|n|(.) is the Bessel function of the first kind [13]
of order |n|, and J ′|n|(.) is its derivative. The quantity k =√
ωµ(ωε− jσ) is the wavenumber in the conductor material,

which has permittivity ε, conductivity σ, and permeability
µ. Similarly, kout = ω

√
µ0εout is the wavenumber in the

surrounding medium, which has permittivity εout, permeabil-
ity µ0, and is assumed to be lossless. After applying the
surface admittance operator to each conductor, we obtain an
equivalent configuration where the medium is homogeneous,
greatly facilitating the computation of the series impedance.
Before discussing this step in Sec. II-D, we extend the surface
admittance approach to hollow round conductors, such as the
one shown in the left panel of Fig. 3.

C. Surface Admittance Operator for Hollow Conductors

The main difference from the solid case is the presence of
two boundaries between the conductor and the surrounding
medium. We approximate the field on the outer boundary
with (4) and, for the field on the inner boundary, we introduce
the Fourier series

E(p,i)
z (θ) =

Np∑
n=−Np

E(p,i)
n ejnθ . (8)
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Fig. 3. Application of the equivalence theorem to a hollow conductor. The
actual conductor, shown in the left panel, is replaced by the surrounding
medium and equivalent currents J(p,i)

s and J(p)
s are introduced on the inner

and outer surface of the conductor (right panel). The inner and outer radius
are denoted with bp and ap, respectively.

With the equivalence theorem, we replace the conductor with
the surrounding medium, as shown in Fig. 3. Two equivalent
current densities are introduced, one on the outer boundary
given by (5), and one on the inner boundary given by

J (p,i)
s (θ) =

1

2πbp

Np∑
n=−Np

J (p,i)
n ejnθ , (9)

where bp is the inner radius of the conductor. The value
of the equivalent currents is chosen in such a way that the
transformation will not alter the electric and magnetic field
both inside the cavity and outside the conductor. Generalizing
the approach of [9], we proved that the equivalent currents
are related to field coefficients by a 2× 2 surface admittance
matrix [

J
(p,i)
n

J
(p)
n

]
=

[
Y

(p)
11,n Y

(p)
12,n

Y
(p)
21,n Y

(p)
22,n

][
E

(p,i)
n

E
(p)
n

]
(10)

which is a generalization of (7). The entries of the matrix are
given by

Y
(p)
11,n =

2π

jω

[
χn(kap, kbp)

mn(kap, kbp)µ
− χn(koutap, koutbp)

mn(koutap, koutbp)µ0

]
Y

(p)
12,n =

2π

jω

[
χn(koutbp, koutbp)

mn(koutap, koutbp)µ0
− χn(kbp, kbp)

mn(kap, kbp)µ

]
Y

(p)
21,n =

2π

jω

[
χn(koutap, koutap)

mn(koutap, koutbp)µ0
− χn(kap, kap)

mn(kap, kbp)µ

]
Y

(p)
22,n =

2π

jω

[
χn(kbp, kap)

mn(kap, kbp)µ
− χn(koutbp, koutap)

mn(koutap, koutbp)µ0

]
where

χn(α, β) = β
[
H′|n|(β)K|n|(α)−H|n|(α)K

′
|n|(β)

]
(11)

mn(α, β) = H|n|(α)K|n|(β)−H|n|(β)K|n|(α) . (12)

In (11) and (12), H|n|(.) and K|n|(.) are the Hankel functions
of order |n| of the first and second kind [13], respectively. The
functions H′|n|(.) and K′|n|(.) are the corresponding deriva-
tives. Because of the limited space, we omit the proof of
these relations, which will be given in a future publication.
The surface admittance relations (7) and (10), written for all
conductors of the cable, can be summarized by the matrix
relation

J = YsE , (13)

where the column vector E collects all field coefficients E(p)
n

and E
(p,i)
n . Similarly, the vector J collects all coefficients

of (5) and (9).

D. Electric Field Integral Equation

After replacing each conductor with the surrounding
medium, we obtain a simpler electromagnetic problem with
a uniform medium. Using the electric field integral equa-
tion [14], we can write the electric field at a point ~r as

Ez(~r) = jωµ0

ˆ
Js(~r

′)G (~r, ~r ′) d~r ′ − ∂V

∂z
. (14)

where
G(~r, ~r ′) =

1

2π
ln |~r − ~r ′| (15)

is the Green’s function of a homogeneous bi-dimensional
space [9]. The first term in (14) is the field produced by the
equivalent currents that replaced the conductors. Integration is
performed over the outer boundary of each conductor and, for
hollow conductors, also over the inner boundary. The second
term is related to the electrostatic potential V . In order to solve
integral equation (14) numerically, we discretize it into a set
of algebraic equations with the method of moments [15], a
popular technique to solve numerically integral and differential
equations. This process, described in [7], eventually leads to
the following numerical counterpart of (14)

E = jωµ0GJ−U
∂V

∂z
, (16)

where the matrix G is the discrete version of the Green’s
function (15). The entries of G can be computed analytically
by solving a double integral [7]. The constant matrix U
follows from the relation

I = UTJ . (17)

between the line currents I and the equivalent current coeffi-
cients J. Substituting (3) into (16), we obtain

E = jωµ0GJ+U [RRR(ω) + jωLLL (ω)] I . (18)

E. Computation of the Series Impedance

By combining (13) and (18) we obtain, with a few algebraic
manipulations [7], the final formula for computing the series
resistance and inductance of the cable

RRR(ω)+jωLLL (ω) =
[
UT (1− jωµ0YsG)−1YsU

]−1
. (19)

III. EXAMPLE: THREE SINGLE-CORE CABLES ENCLOSED
WITHIN A CONDUCTING PIPE

A. Cable Description

To demonstrate the versatility and accuracy of the MoM-
SO approach, we apply it to a configuration of three single-
core coaxial cables that are placed asymmetrically inside a
conducting pipe (see Fig. 1). Each single-core cable features
a metallic screen inside an insulating jacket, giving a system
of seven insulated conductors. We remark that three-phase
cables and pipe-type cables can be viewed as subclasses of
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TABLE I
CHARACTERISTICS OF THE CABLE SYSTEM SHOWN IN FIG. 1.

Item Parameters
Core σ = 58 · 106 S/m, radius = 10.0mm

Insulation Thickness = 4.0mm, εr = 2.3
Screen Thickness = 0.2mm, σ = 58 · 106 S/m
Jacket Thickness = 2mm, εr = 2.3

Steel pipe Outer diameter = 100mm, thickness = 5mm,
σ = 107 S/m , µr = 100

the geometry in Fig. 1. The three-phase cable has its single-
core cables symmetrically placed inside the equivalent pipe
conductor (armoring), while the pipe-type cable has its single-
core cables asymmetrically arranged inside the pipe but with
metallic screens touching. Most EMTP-type programs include
a procedure for computing the cable series impedance which in
the case of symmetrically arranged single-core cables partially
accounts for proximity effects in the pipe [5], but not in the
phase conductors and screens.

B. Series Impedance Computation

Using MoM-SO, we computed the 6× 6 series impedance
matrix with respect to the six conductors (three phase con-
ductors plus three screens), between 1Hz and 1MHz using
120 logarithmically spaced samples. Next, the screens were
eliminated by assuming them to be continuously grounded,
giving a 3 × 3 impedance matrix. Figure 4 shows the cal-
culated positive sequence resistance and inductance per km,
for different truncation orders of the Fourier series (4), (5),
(8) and (9). It is observed that orders Np = 3 and Np = 7
practically give the same result, and so Np = 3 is deemed
sufficient. For validation, we compared MoM-SO against a
FEM simulation [6] performed with a fine mesh (108,418 tri-
angles). The MoM-SO result agrees very closely with the FEM
result, thereby validating the proposed algorithm. Figure 4 also
shows the cable parameters obtained with Np = 0. With this
setting, we assume a circularly-symmetric current distribution
in the conductors, neglecting proximity effects. The results in
Fig. 4 show that this common assumption leads to a noticeable
deviation for the resistance and in particular for the inductance.

Fig. 5 shows the same result when the screens have not
been eliminated, i.e. with zero net current flowing in each
screen. It is observed that we now get large errors also at high
frequencies when ignoring the proximity effect (Np = 0),
while the result with MoM-SO (Np = 3, Np = 7) agrees
closely with the FEM solution. In this case, the screens can
only partially shield the magnetic field as only proximity
currents are permitted to circulate in the screens. As before,
Np = 3 is a sufficient order for MoM-SO since increasing the
order to Np = 7 does not change the result.

C. Timing Results

Table II reports the computational efficiency for the alter-
native approaches. FEM takes 3.5 hours to compute the cable
impedance, while MoM-SO with Np = 3 takes only 5.57 s.
The proposed method is therefore faster by a factor of about
2200. These results confirm the outstanding efficiency of the
proposed method.
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Fig. 4. P.u.l. positive sequence resistance and inductance of the cable system,
obtained with MoM-SO and FEM. Screens are continuously grounded.

TABLE II
COMPUTATION TIME FOR THE PROPOSED METHOD (MOM-SO) AND

FINITE ELEMENTS (FEM) APPLIED TO THE CABLE SYSTEM OF SEC. III.
ALL COMPUTATIONS WERE PERFORMED ON A WORKSTATION WITH A 2.5

GHZ CPU AND 16 GB OF MEMORY.

Method Computation time Speed up
FEM 12,600 s = 3.5 hours -
MoM-SO, Np = 0 3.57 s 3529 X
MoM-SO, Np = 3 5.57 s 2262 X
MoM-SO, Np = 7 7.93 s 1589 X

D. Traveling Wave Modeling by Universal Line Model

The shunt capacitance matrix CCC was calculated under the
assumption that the cable is filled with a poorly conductive
medium, allowing standard analytical formulae to be used [4].
The capacitance value, and the resistance and inductance
values obtained from MoM-SO with Np = 3, were used
to compute the characteristic admittance matrix Yc and the
propagation function H of the cable, assuming a length of
l = 1km. The samples were next subjected to rational
modeling by the Universal Line Model [10]. Figs. 6 and 7
compare the raw samples of Yc and H with the extracted
model, showing an excellent agreement between the two.
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Fig. 5. P.u.l. positive sequence resistance and inductance of the cable system,
obtained with MoM-SO and FEM. Screens are open.

E. Transient Waveforms

Using the time domain implementation of the Universal
Line Model available in PSCAD v4.2 [16], a transient voltage
response was calculated when applying a unit step voltage to
the phase conductor of the top cable in Fig. 1, with all other
phases and sheaths grounding at one end. All conductors are
open at the far end, as shown in Fig. 8. Figures 9 and 10
show respectively the resulting voltage waveforms between
the phase and screen, and between the phase and ground.
Simulations were performed three times using the series
impedance obtained with different methods: FEM, MoM-SO
with Np = 0 (only skin effect taken into account), and MoM-
SO with Np = 3 (both skin and proximity effect taken into
account). It is observed that the induced sheath voltage is
strongly affected by the proximity effect and that the result
by MoM-SO (Np = 3) and FEM agree closely. The deviation
from the FEM result is further reduced when increasing the
MoM-SO order.

The effect of proximity is even more pronounced for waves
that travel between the sheaths, i.e. the intersheath modes. To
see this, we applied a step voltage between the sheaths of the

100 102 104 106
10−8

10−6

10−4

10−2

100

Frequency [Hz]

C
ha

ra
ct

er
is

tic
 A

dm
itt

an
ce

 [S
]

 

 

Data
Model

Fig. 6. Rational fitting of the characteristic admittance Yc of the cable
system of Sec. III. The initial samples (solid blue curve) are compared with
the response of the extracted model (red dots). An approximation of order 14
has been used.
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Fig. 7. Rational fitting of the propagation function H of the cable system of
Sec. III. The initial samples (solid blue curve) are compared with the response
of the extracted model (red dots). The extracted model has order 10 for each
of the four group delays [10].

two lower cables in Fig. 1 as shown in Fig. 11. The simulated
results in Fig. 12 show that ignoring proximity effect leads to
very large errors in the transient response.

IV. CONCLUSION

We presented a fast and accurate technique to compute the
series impedance of cables with round conductors. The method
supports both solid and hollow (tubular) conductors, and ac-
curately predicts both skin and proximity effect. Compared to
existing approaches, like finite elements, the proposed method
is much faster, and we demonstrated a speed up of 2200X
in the modeling of three single-core cables enclosed by a
conducting pipe. The simulated transient overvoltages also
show the importance of an accurate prediction of proximity
effects.
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Fig. 8. First configuration considered in Sec. III-E. A unit step voltage is
applied to the top phase conductor of the cable of Fig. 1. All other phases
and sheaths are grounded at one end.
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Fig. 9. Phase-screen voltage at the receiving end (V7 − V8) for the
configuration show in Fig. 8.
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