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Abstract-- The magnetization of a transformer is usually 

associated with the well-known phenomenon of inrush current. 
However, inrush current does not only affect the transformer 
being switched on. Instead, it has a significant impact also on all 
parallel connected transformers, which most certainly includes 
measurement transformers. This is known as a sympathetic 
inrush phenomenon. While the transformer being switched on 
might be a subject to a sudden high saturation level, the parallel 
transformers are gradually drawn to saturation as well, but of 
opposite polarity. The sympathetic inrush is expected in situations 
where the ohmic part represents a significant portion of the total 
system impedance. In contrast to other available literature on this 
subject, in this paper a modal approach to solving equivalent 
circuit by expressing differential equations in the state-equation 
form is selected. From the derivation of eigenvalues and 
eigenvectors, the phenomenon can be systematically investigated. 
A special attention will be given to circumstances, when the 
already operational transformer is fully loaded as within 
substations two or more transformers often operate in parallel, 
among which at least one of them is usually loaded. Finally, 
simulation results are compared to captured Wide Area 
Monitoring System (WAMS) measurements of the phenomenon 
and reasons for discrepancies are discussed. 

 
Keywords: inrush current, magnetization curve, sympathetic 

interaction, power system dynamics simulation, WAMS 
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I.  INTRODUCTION 

HE transformer inrush phenomenon is very known and 
widely described for a long time. If the prospective 

magnetic flux (imaginative steady-state conditions prior to 
switching, describing the situation as if the switch was already 
on) in the transformer iron core at the moment of transformer 
energization differs from the value of zero, the flux DC 
component appears in the transformer core, which decays 
exponentially with time. Due to non-linear magnetizing 
characteristic of the transformer iron core (magnetic flux 
versus magnetizing current), a DC component of the magnetic 
flux can drive the transformer into saturation, in which the 
current drawn from the power system no longer changes 
linearly with the magnetic flux. Instead, each change in 
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magnetic flux generates large currents that contain higher 
harmonic content. This usually happens during a transformer 
energization, especially in case of three-phase transformers, as 
the majority of circuit breakers perform a simultaneous 
switching of all three phase terminals. The intensity of the 
phenomenon can be significantly reduced or even omitted by 
controlling the moment of individual phase switching. 
However, not all transformers are equipped with mechanisms 
allowing such switching. 

According to [1] transformer inrush currents might occur in 
different forms and can be divided into the following sub-
categories: 

− energization inrush (caused by re-application of 
voltage source to the transformer which has 
previously been de-energized. However, remanence 
could be still present), 

− sympathetic inrush (caused by re-application of 
voltage source to the transformer, which operates in 
parallel to two or more other transformers), 

− recovery inrush (caused by restoration of a voltage 
after clearance of a fault). 

The subject of this paper is the second sub-category from 
the above list. Even though the first explanations of the 
phenomenon can be found in the quite early literature [2], the 
topic is also very relevant these days. Authors think it is 
reasonable to speculate that the need for additional explanation 
of such important phenomena always exist. This paper is based 
on findings and presentations, published in [1], [3], [4], [5], 
[6], [7], [8] and [9]. Certain additional explanations are added 
to papers already published with the strong support from clear 
graphical representation. Besides, in contrast to other available 
literature on this subject, in this paper a modal approach to 
solving equivalent circuit by expressing differential equations 
in the state-equation form is selected. From the derivation of 
eigenvalues and eigenvectors, the phenomenon can be 
systematically investigated. 

Authors are of opinion that this paper would be very 
appreciated among TSOs as well as researches that are 
beginning their research on this topic.  

II.  ENERGIZATION INRUSH CURRENT 

At first, it is reasonable to briefly explain the basic 
transformer energization inrush current. The most explanatory 
way to do so is by writing a voltage equation based on the 
Kirchhoff's second law for the transformer equivalent circuit, 
connected via system impedance Zs = Rs + jωLs to a voltage 
source u(t) (Fig. 1). Transformer equivalent circuit is usually 

T



thought of as a “T” circuit, where the denotations represent the 
following:  

R1 ......... resistance of the transformer’s primary winding, 
Lσ1 ........ leakage inductance of the transformer’s primary 

winding, 
R2’ ........ resistance of the transformer’s secondary winding 

(recalculated on the number of primary winding 
turns N1), 

Lσ2’ ...... leakage inductance of the transformer’s secondary 
winding (recalculated on the number of primary 
winding turns N1), 

Rm ........ magnetizing resistance of the transformer, 
representing iron losses, 

Lm......... magnetizing inductance of the transformer. 

 
Fig. 1. Equivalent circuit of a power transformer, connected to a voltage 
source via system impedance 

 

As a transformer inrush current occurs due to the non-
linearity of Lm in the magnetizing branch, the simplest way to 
analyze the phenomenon is to assume that the transformer is 
un-loaded (i2’ = 0, consequently the secondary branch is 
inactive and depicted in grey). This enables writing the 
following loop voltage equation, where the voltage source u(t) 
= Um · sin(ω·t + α) is assumed ideally sinusoidal and the iron 
losses are neglected (Rm → ∞, also depicted in grey): 
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where i(t) = is(t) = i1(t) = im(t). For the purpose of simpler 
mathematical derivation, let us assume that Lm is linear (even 
though it is in fact the non-linearity of Lm the ground reason 
for the inrush phenomenon to be so important). Further, let us 
merge the transformer quantities and denote R = R1 and L = 
Lσ1 + Lm. If we assume the relation between current and 
magnetic flux L = Φ/i, the following expression can be 
obtained by rewriting (1): 
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What we are interested in is the passive circuit response, i.e. 
(2) without voltage source u(t) = 0. The so-called 

homogeneous solution of differential equation (2) with a 
constant C1 is therefore more or less trivial and equals: 
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 By taking into account that the switch from Fig. 1 is turned 
on at time t = 0 when flux equals ΦDC(0) = Φ0 (initial 
conditions), (3) becomes: 
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 (4) represents the passive circuit response, which is 
obviously a DC component with a decaying rate determined by 
ratio between circuit serial ohmic resistance and serial 
inductance. Particular part of the differential equation solution 
on the other hand (AC flux component), which is not of main 
concern within this paper, can be obtained by using method of 
undetermined coefficient and some trigonometric laws. 
Assuming the solution in the form of: 
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its insertion into (2) gives the unknown constants: 
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Considering trigonometric equalities: 
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the particular solution equals: 
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It is clear that the voltage across transformer inductance 
UL(t) and its magnetic flux Φ(t) = ΦDC(t) + ΦAC(t) are π/4 
shifted, as the definition dictates: 
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This is shown also in Fig. 2. By applying u(t) at the moment 
when UL(t) is at its peak, Φ(t) would experience no DC 



component (Φ0 = 0) as the prospective flux would at that time 
be equal to zero – dashed grey curve. However, by applying it 
at UL(t) zero-crossing when the prospective flux would be at 
its peak value, it would experience the worst-case DC 
component (Φ0 = Φ0,max = L·Um/Z) – solid black curve. Of 
course, in above derivations no residual flux in the transformer 
core was assumed and consequently, Φ0 is in such case always 
between -L·Um/Z ≤ Φ0 ≤ L·Um/Z. Also, due to impedance angle 
ϴ being very close to π/4 it is clear that UL(t) is almost in 
phase with u(t).  

 

 
Fig. 2. System variables for circuit of Fig. 1 with respect to time for two 
typical moments of transformer energization 

 

As long as our goal is merely understanding the reason 
behind the flux DC component ΦDC(t) occurrence, the 
simplification of considering Lm (or in above derivation L, as L 
= Lσ1 + Lm) linear is more or less irrelevant. However, as soon 
as inrush currents are concerned, one has to keep in mind and 
suitably consider that Lm is in fact nonlinear. Magnetizing 
current im(t) is directly dependent on the non-linearity of Lm. 
This is why in order to simulate the actual phenomenon, a non-
linear saturation curve has to be incorporated into the model. 
In such case, high value of magnetic flux in the transformer 
core causes extremely high currents flowing through 
transformer winding (see lower graph on Fig. 3), which in turn 
cause significant voltage drops on system impedance during 
high current period – see upper graph on Fig. 3. Following 
(11) which describe the flux as being the integral of voltage, 
one can easily come to a conclusion that due to high currents 
the transformer core does not reach as much into saturation 
zone that would reach in case of e.g. Fig. 2 where Lm was 
considered linear. The comparison can be seen on the second 

graph on Fig. 3. So to a certain extent, this can be thought of 
as some kind of a self-regulating mechanism similar to self-
regulating effect of power system load, which due to voltage 
and frequency drop usually decrease its power withdrawal 
from the grid [10]. Not only that, the decay of ΦDC(t) is clearly 
faster in the presence of non-linear magnetizing characteristic. 

 

 
Fig. 3. Transformer inductance voltage, magnetic flux and magnetizing 
current in case of non-linear saturation characteristic  

 

At this point, additional remark has to be discussed 
concerning transformer saturation curve. Transformer no-load 
tests usually provide a non-linear characteristic between 
transformer voltage and winding current. This data should not 
be used for simulation purposes carelessly, as no-load test 
results usually provide voltages and currents in RMS values. 
However, according to Fig. 3 (lower graph) the shape of the 
current while transformer is in saturation is highly non-
sinusoidal. While the voltage used in tests is said to be purely 
sinusoidal and therefore peak values can simply be obtained by 
multiplying with √2, this is not the case with the current [11]. 
Measuring equipment is not specially calibrated to expect such 
extreme non-sinusoidal current conditions so measured RMS 
current values do not directly reflect the quantity of 
momentary currents values. This is why the no-load test curve 
has to be converted into simulation-suitable form by e.g. using 
an algorithm in [11].  

III.  SYMPATHETIC INRUSH CURRENT 

A.  Derivations 

Transformer sympathetic inrush current is a consequence of 
a sympathetic interaction between two or more transformers 



operating in parallel, after applying a voltage source u(t) to 
one of them. A similar approach as for a single transformer 
energization can therefore be performed for the derivation of 
magnetic flux of two parallel transformers. As only the DC 
flux component is responsible for transformer saturation, AC 
flux will be ignored in this section. Similar equivalent circuit is 
used for derivation of equations with the only difference 
having two unloaded transformers instead of just one (Fig. 4). 
The switching is performed on transformer T2, whereas 
transformer T1 is already energized. Again, currents on the 
secondary winding of both transformers are assumed to be 
zero and the iron losses are also neglected. The situation is 
shown in Fig. 4, where the elements corresponding to 
secondary winding and iron losses are again deliberately 
depicted in grey color, as they can be treated as inactive. Two 
loop voltage equations (corresponding to two voltage loops, 
identified by denotations I. and II.) can be written in a similar 
manner than (1): 
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Renaming and merging individual transformer quantities 
(R1,T1 = RT1, R1,T2 = RT2, Lσ1,T1 + Lm,T1 = LT1, Lσ1,T2 + Lm,T2 = 
LT2) (12) and (13), considering the relation between the 
magnetic flux and the current L = Φ/i, can be written in the 
following matrix form: 
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where A is the state matrix, B is the control matrix [12] and 
individual matrix elements of A being (as already written, 
elements of B are not of interest within this section and are 
consequently not provided): 
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We are dealing with the second-order system so two 
eigenvalues are expected. In case of two equal transformers 
(RT1 = RT2 = R, LT1 = LT2 = L) the eigenvalues are the 
following (also available from e.g. [5]): 
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whereas in general case when transformers T1 and T2 are 
different they become: 
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where 
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Fig. 4. Common equivalent circuit of two un-loaded power transformers 
operating in parallel, connected to a voltage source via system impedance 

 

Provided equations (17) and (18) offer investigation of 
sympathetic interaction between transformers of different 
sizes, whereas in the available literature usually equal 
transformers are considered. For physically sensible 
parameters, both eigenvalues (λ1 and λ2) are real and the 
corresponding right eigenvectors of matrix A (η1 and η2) 
determine the DC flux components of both transformers, as 
shown: 
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Expressions for right eigenvectors η1 and η2 are a bit more 



complex and are due to the space limitation omitted from this 
paper. In order to obtain exact solutions for both fluxes, first 
the amplitudes of exponent terms (product of right eigenvector 
and unknown constant, i.e. η1·K1 and η2·K2) in (19) have to be 
determined. This is done by considering initial conditions at t 
= 0, when (19) becomes: 
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Solving (20) gives us expressions for constants K1 and K2. 
By multiplying those with eigenvectors η1 and η2 as 
determined by (19) and at the same time considering the fact 
that transformer T1 is already operational (ΦT10 = 0) and hence 
T2 is the sole subject to initial flux DC component at the 
moment of switching (ΦT20 ≠ 0), amplitudes of exponent terms 
are obtained: 
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By assuming the equality of both transformers, which is 
suitable from flux versus time visualization’s point of view, 
(21) becomes: 
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It is obvious that magnetic flux DC components of both 
transformers is determined by the same two exponent terms 
(1/2· ΦT20·eλ1·t and 1/2· ΦT20·eλ2·t), the only difference being 
that in case of T1 they are mutually subtracted whereas in case 
of T2 they are added. The situation is graphically depicted in 
Fig. 5. So basically each of the two exponent terms has its own 
decay rate (λ1 and λ2), among which the one containing system 
impedance (λ2 in case of (16)) is clearly faster. This term is 
also the main factor determining the speed of the gradual 
transition into saturation of already operational transformer 
T1. Namely, transformer T2 is being energized and therefore 
its DC flux component appearance is sudden (as in case of Fig. 
2 and Fig. 3). Transformer T1 on the other hand experiences 
gradual transition towards the saturation zone as seen in Fig. 5. 
It is of vital importance for one to notice that DC flux 
components of both transformers are of opposite sign and 
therefore, their saturations of opposite polarity as well. 
Physical background of the reason for such phenomenon is 

given in the following subchapter. 
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Fig. 5. Magnetic flux DC components of both (equal) transformers in case of 
transformer T2 energization 

B.  Physical background 

For the purpose of understandable explanation of the 
physical situation, we will use (23) derived for two equal 
unloaded transformers. In the steady-state operation, currents 
can be thought of as purely sinusoidal, as transformer cores are 
not saturated. On the other hand, during the described 
phenomenon this is clearly not the case (lower graph on Fig. 3) 
and consequently, currents (i) have to be in general thought of 
as a sum of alternating AC component (i% ) and the direct DC 
component (I): 
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According to (11) magnetic flux can be written with an 
integral of the voltage applied to the nonlinear inductance, so: 
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where the voltage drops Δu1(t) and Δu2(t) encompass all 
elements between the source and the substitute inductances LT1 
= Lσ1,T1 + Lm,T1 and LT2 = Lσ1,T2 + Lm,T2 and are therefore: 
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For clearer understanding, let us observe the magnetic flux 



change ΔΦ(t) in only a short time interval, e.g. single voltage 
period T = 1 / fn (where fn is the nominal system frequency) so: 
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The first summand represents the integral of a pure 

sinusoidal signal over one period and is therefore by the 
definition equal to zero in both cases. On the other hand, the 
second summand equals zero only when the currents constitute 
only an alternating component. Namely, the integral of a 
purely sinusoidal voltage drop over one period again equals 
zero. This means that the magnetic flux changes only when 
there is a direct current component present. By considering 
this fact and that a DC current does not cause any voltage drop 
on reactive elements, (27) can be rewritten as: 
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One should keep in mind that currents in (28) represent DC 
currents. At the moment of switching I1,T1 = 0, whereas I1,T1 > 
0 due to the assumption that the switching takes place in the 
worst possible moment and so DC flux component is suddenly 
present at transformer T2. According to (28) it can be seen that 
under such circumstances both flux changes are negative. This 
negative change builds up with each voltage period T, which 
gradually drags positive DC flux component of transformer T2 
out of positive polarity saturation and on the other hand pushes 
DC flux component of transformer T1 in the same direction. 
However, as it is initially zero this means it is being driven 
towards negative polarity saturation.  

The optimal way to support the above explanation is to add 
some graphic representation – see Fig. 6. The two graphs 
depict phase diagrams of magnetic flux versus magnetizing 
current of both transformers T1 and T2. Black dots represent 
DC magnetic flux components at the moment slightly after the 
application of u(t) to transformer T2. In addition, black arrows 
indicate the direction towards which the dots are initially 
travelling as time t progresses. As can be seen from Fig. 6 DC 
flux component corresponding to T1 is at the origin of the 
diagram (no DC component at the switching moment), 
whereas DC flux component corresponding to T2 is at value 
ΦT20>0 (determined by the moment of connecting T2 to the 
grid – see Fig. 2 and Fig. 3). The sinusoidal curves on the 
graphs indicate the AC component of both fluxes, which 
summed together with a DC component represent the value of 
the total flux at each moment in time t. This makes it clear that 
transformer T1 at the moment of u(t) application still operates 
in the linear part of the saturation characteristic (depictured by 
the thick gray line), whereas transformer T2 is already in 

positive polarity saturation. After several voltage periods T, 
both DC components are gradually shifted in the direction of 
black arrows. Since transformer T2 is building a negative 
polarity DC flux component, high magnetizing currents appear 
on its terminals as soon as the saturation curve knee is reached. 
In this way, I1,T1 is gaining in amplitude of negative sign and 
eventually takes a substantial part of overall DC flux change – 
see (28). However, according to (28), I1,T1 has a stronger 
influence on the flux change of transformer T1 (multiplied by 
the sum of two ohmic resistances) and I1,T2 of transformer T2. 
This is why the direction of DC flux component of T1 
eventually reverses, whereas that of T2 does not. After the 
reversal, DC flux components of both transformers travel 
towards zero with an important addition compared to single 
transformer energization, i.e. DC current of a neighboring 
transformer slows down the DC flux decaying rate due to 
opposite saturation polarity. This is why this transition is 
slower compared to the energization inrush phenomenon of a 
single transformer, as the currents of both transformers (of 
different signs) influence the speed of flux changes in both 
transformers. 

 

 
Fig. 6. Phase diagrams of transformers T1 and T2 at the moment slightly after 
application of a voltage source u(t) to transformer T2 

 

As both transformers have the same connection point 
(connected to the same busbar within a power plant or a 
substation), the voltages on both inductances LT1 and LT2 are in 
phase and consequently so are both fluxes. This means that the 
opposite polarity saturation zones of both transformers are not 
reached simultaneously, but 180° apart. As current and 
magnetic flux are in phase, this also goes for high current 
intervals, so called “current spikes” – see Fig. 7. 

IV.  SYMPATHETIC INRUSH WITHIN A SUBSTATION 

The phenomenon, extensively described in previous 
sections, does not differ in different topological situations, e.g. 
in a power plant or in a substation. However, in a power plant, 
transformer is used to increase the generator voltage and 
therefore the power flow is always in the same direction 
(towards the grid). Not only that, situation when one of several 
transformers would already be loaded and the other one being 
energized is rare. Within a substation on the other hand, such 
operation is common. The reason why this is important from 
the transformer inrush’s point of view is provided in the 
following subsections.  

 



 
Fig. 7. Magnetizing currents “spikes” of both transformers during 
sympathetic inrush are 180° apart 

A.   Power plant situation 

Within a power plant it is reasonable to perform 
transformer energization in such a way that generator is not 
affected. This means that energization of both parallel 
transformers is done while the generator is off-line, which 
means on the grid-side of the transformer. The first switching 
magnetizes first transformer (energization inrush from Fig. 1) 
while the second switching causes sympathetic inrush 
phenomenon – the situation is identical to that of Fig. 4. The 
currents, measured on both transformer windings, are equal to 
magnetizing current of each transformer. 

B.  Substation situation 

Within a substation, situation usually occurs when a certain 
transformer is being energized while other parallel 
transformers are not only previously energized but are also 
fully loaded. In such case the currents, measured on the loaded 
transformer windings, encompass not only magnetizing current 
of the corresponding transformer but also the load current and 
especially a certain portion of the magnetizing current of 
neighboring transformer(s). The situation is graphically 
represented in Fig. 8. It is evident that highlighted primary i1,T1 
and secondary i2,T1 currents are equal to: 
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1,T1 load m,T2 m,T1

2,T1 load m,T2 m,T1

i i f i f i

i i f i f i

= − ⋅ + ⋅

= − ⋅ − − ⋅
2 1

2 1
1

 (29) 

 

In Fig. 9, simulation results confirm (29). Within each 
graph in Fig. 9, the highlighted area is depicted on shorted 
time interval of 200 ms. It can be seen that a portion of 
magnetizing current im,T2, flowing from LV grid, is present in 
both currents in the same extent. Gradually increasing im,T1 is 
however present on depicted currents differently: first, with an 
opposite sign and second with a different share, depending on 
transformer and system impedances.  

  
Fig. 8. Currents in the parallel connection of two transformers (operational 
one being loaded) during sympathetic inrush phenomenon 

 

 
Fig. 9. Primary and secondary winding currents of loaded transformer T1 
during energization of neighboring transformer T2 

 

In the continuation, simulation results from Fig. 9 are 
compared to captured Wide Area Monitoring System 
(WAMS) measurements of the presented phenomenon (Fig. 
10). However, before looking into WAMS measurements, few 
facts should be shortly discussed. WAMS system is based on 
Phasor Measurement Unit (PMU) operation, which provide 
measurements of phasors (not momentary values of AC 
variables) by following the IEEE standard [13]. According to 
[13], there are two performance classes of PMU requirements, 
the “M class” (intended for monitoring, which should provide 
more accurate data with no special need for fast reporting) and 
“P class” (intended for protection, which should provide less 
accurate data but in shorter period of time). WAMS results 
from Fig. 10 are in accordance with [13], but not yet intended 
to be a part of the protection scheme and therefore, the exact 
sliding window length of RMS calculation is relatively long. 
Besides, current transformers used for obtaining those 
measurements did most likely also suffer from saturation. 
Consequently, authors were unable to reconstruct the curves 
from Fig. 10. Nevertheless, the initial fast increase of current 
(see lower graph in Fig. 10) is in the order of 200 ms, which 
implies the cause for that might be a portion f2·im,T2. On the 
other hand, slower increase of current within the following 3 



seconds (see upper graph in Fig. 10) might be the consequence 
of (1-f1)·im,T1. One should be aware that during the calculation 
of RMS values, all measurements are first squared and 
consequently the sign of the current is not of any significance.  

 

 
Fig. 10. Captured WAMS measurements of a sympathetic inrush current 
phenomenon (different time scales) 

V.  CONCLUSIONS 

In this paper the sympathetic inrush current of two parallel 
transformers is presented by the use of a modal approach to 
solving equivalent circuit. Equivalent circuit’s differential 
equations were expressed in the state-equation form which is 
usually not practice in similar papers. By doing so, authors 
made the analysis of DC flux component possible for several 
kinds of situations, e.g. with more than two parallel 
transformers, with transformers of different sizes, etc.  

Special attention was given to explaining the phenomenon 
in such a way that the paper content would be useful to both 
scientists and engineers in the process of studying the 
phenomenon. In addition, the situation with already 
operational transformer being fully loaded was addressed, the 
reason being availability of currents that can be measured in 
reality. Namely, in case of un-loaded transformer e.g. the 
winding current equals the magnetizing current, whereas in 
case of loaded transformer, the winding current encompasses 
several components. The simulation results were compared to 
captured WAMS measurements of the phenomenon in a real 
power system. A few problematic issues that make the 
comparison difficult were stressed. In order to reconstruct the 
captured WAMS measurements, further work will include 
modelling PMU’s phasor length calculation from momentary 
signal values. Also, the model will be expanded to include not 
only the saturation characteristic but hysteresis as well. In such 
a way, it will be possible to approach the real situation, as at 
the moment of transformer switching there is most certainly 
some remanent flux present in the transformer iron core. Its 

modelling is possible only through hysteresis.  
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