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Abstract-- There has been several attempts to detailed 

modeling of the transmission line for the analysis of the 

electromagnetic transients. One of the most accurate models for 

the line representation is the universal model. This model is based 

on the Vector Fitting to obtain a rational approximation of the 

transmission line model which results in high-order time domain 

realization. This work proposes a new method, based on the 

universal model and rank constrained optimization to achieve a 

low-order realization of the transmission line propagation 

function with the desired accuracy. This reduces the computation 

burden by a factor equal to number of conductors. The approach 

has been applied to an overhead transmission line and the results 

satisfactorily match with the PSCAD results. 
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I.  INTRODUCTION 

IME-DOMAIN simulation of electromagnetic transients is 

essential for design, study and planning of power systems. 

The transmission line model contains two irrational transfer 

function matrices, i.e., the characteristic admittance matrix Y(s) 

and the propagation transfer function matrix H(s). The line 

modelling for time-domain simulation requires approximation 

of these two transfer functions with rational transfer functions 

which are inherently easier to discretize and integrate. 

These approximations are still being investigated to deduce 

more realistic emulation of the physical behavior of the 

overhead line and the underground cable. In most works, 

approximation of Y(s) and H(s) are done separately and 

independently. Vector fitting [1] is used in both 

approximations as the core technique where in case of Y(s) the 

passivity enforcement is also introduced  to ensure that the line 

model is passive [2] [3]. 

For the approximation of H(s), there are two main 

approaches, i.e., the modal-domain model and the phase-

domain model where the later one is more accurate but 

computationally more demanding. The differences in these two 

groups are as follows. Due to the presence of different time 

delays in the propagation function, it is not possible to apply 

vector fitting unless these delays are extracted from the 

propagation function. Modal decomposition is used to 
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decompose the matrix into different modes with different time 

delays. The selection of the matrices used for modal 

decomposition determines the model is either in phase-domain 

model or in modal-domain model. In phase-domain models a 

frequency-dependent matrix is used for modal decomposition 

however a fixed matrix at all frequencies is used in modal-

domain models. This constant matrix can be eigenvector 

matrix at a specific frequency. As mentioned earlier, the 

phase-domain model is more accurate than the modal-domain 

model. The discrepancy between the two is more significant 

for cables. 

All the models focus on the frequency domain model and 

do not consider the time domain realization effort and 

computation burden at modeling stage. Using real arithmetic 

instead of complex arithmetic in the implementation stage has 

been proposed in [8] and shown to decrease the number of 

floating point operations nearly by half. This work intends to 

improve the simulation speed by proposing a model to 

minimize the number of the states in the rational realization of 

the propagation function H(s). The same method as [2] is used 

for characteristic admittance matrix Y(s). For H(s) the poles 

are found based on [4] and for the residues, instead of a least 

square problem, a minimization problem is proposed which 

considers the rank of the residue matrices as a constraint. 

Manipulations are done to solve the non-convex optimization 

and the approach is verified for a transmission line case study 

system, for both the frequency response fitting and the time-

domain simulation. 

The rest of this paper is as following. First, the transmission 

line equations and the universal line model (ULM) are 

explained. Second, the proposed method is explained and the 

problem is reformulated. Third, the proposed method has been 

applied to a transmission line and the results are discussed. 

Time-domain results are also provided and compared to the 

PSCAD results for two different scenarios. The last part 

concludes the paper. 

T 

mailto:ramin.mirzahosseini@mail.utoronto.ca


 

II.  TRANSMISSION LINE PHASE-DOMAIN MODEL 

A.  Formulation of Transmission Line Universal Model 

A multiphase transmission line model is shown in Fig. 1. 

The equations describing the transmission line in the frequency 

domain are  

 1
k c k c m m

m c m c k k

I Y V H(Y H I ),

I Y V H(Y H I ).

  

  
 

Since the rational transfer functions are more appropriate for 

time domain simulations, two transfer function matrices Yc and 

H in (1) should be approximated with rational transfer 

functions. The characteristic admittance matrix Yc is smooth 

and can be fitted with a small number of poles. However, 

fitting the propagation function H, due to the presence of 

multiple delays, is more challenging. H is defined as 

 2H exp( YZl ),   

where Y and Z are per unit length admittance and impedance 

matrices of the line, respectively. Eigenvalues of the matrix YZ 

in (2) are also eigenvalues of H by definition. Therefore 

eigenvectors of YZ can be used for modal decomposition of H 

as well. Thus the propagation matrix is decomposed into 
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where Γm is a square matrix which results from multiplying the 

m
th

 column of eigenvector matrix T(ω) by the m
th

 row of 

T
−1
(ω), and τm is the appropriate delay for e

−λm(ω)l
 . This delay 

can be obtained by 
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where vm(Ω) is the modal velocity defined separately for each 

mode and Ω is the highest frequency sample [4]. It should be 

noted that delay for minimizing the fitting error differs from 

(4) [5]. To obtain a rational approximation of H, 

approximations of each Γm(ω)e
−λ′m(ω)l

 should be determined 

which are matrix transfer functions. This needs fitting of Γm(ω) 

and e
−λ′m(ω)l

 separately but in the universal model the approach 

is different, i.e., first each e
−λ′m(ω)l

 is fitted which results in 
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     Usually fitting problems are challenging since both poles 

and residues should be determined simultaneously. However, 

knowing these sets of poles from all modes, the propagation 

matrix transfer function fitting will turn into only finding 

residues as: 
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where nm and np are number of modes and the poles used in 

fitting of each mode respectively. It should be noted that since 

the eigenvectors matrix T(ω) and therefore Γ(ω) are smooth 

functions of frequency, then it is possible to compensate their 

effects by choosing appropriate residues. To determine the 

minimum error residues cmpij the overdetermined matrix 

equation of the form (7) 

, (7)Ax B

where x is the vector of residues cmpij and B is the vector of 

measured frequency responses is used. 

B.  Time Domain Implementation of ULM 

The fitted propagation transfer function consists of multiple 

time delays and rational transfer function matrices as shown in 

(3). Since there are different time delays, each rational transfer 

function Hm is realized separately as follows. All entries of 

each Hm have the same set of poles so does each column of Hm 

called hmi, as shown in (8). 

 
 

Fig. 1. Transmission Line phase Model 

 

 
Fig. 2. Transmission Line phase model time domain realization 
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Each hmi is realized as a linear system with nc outputs and 

one input. Considering the total number of columns of Hm to 

be nc, the total number of poles used for realization of each Hm 

is nc×np. Therefore, the total number of poles for realization of 

H(s) is 
1

mn

i c pin n


 where nm is the number of modes, and 

usually is equal or less than the number of conductors nc. In 

cases where there are multiple conductors, there are some 

modes which have the same time delays and considered as one 

mode. In addition, npi is the number of poles for i
th

 mode. It 

should be noted that without loss of generality it is assumed 

that the number of poles used in fitting of each mode are the 

same and referred to as np. Fig. 2 depicts the concept for 

realization of the propagation function H(s). 

III.  PROPOSED METHOD 

Each rational transfer function matrix in (8) can be written 

as  

1

1
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where each entry of Cpm is determined based on the least 

square problem (7). As mentioned previously and can be seen 

from Fig. 2, the order of the state-space realization of Hm is 

nc×np. All the entries in Hm share the same characteristic 

polynomial of order np. This means either the realization of Hm 

is not minimal or each pole is repeated nc times where the 

latter scenario usually occurs. The number of times each pole 

ap is repeated in realization of Hm is equal to the rank of the 

residue matrix Cpm. If Cpm is ideally rank one, then ap will be a 

simple non-repeated pole. This indicates if all Cpm matrices are 

rank one, then the transfer function Hm can be realized with the 

np-order state-space model which reduces the calculation by 

factor of nc. In this work it is intended to find a lower order 

state-space realization for Hms. This order is desired to be np, 

since there are the same np poles in each entry of Hm. The 

order of the realized system for each Hm is 

1

deg( ) ( ). (10)
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p

H Rank C
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This goal can be obtained by minimizing the rank of Cpm 

matrices when solving (7). Solving the residue problem should 

be re-defined in terms of Cpm matrices as 
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where ε is the predefined maximum fitting error and Ns is the 

number of frequency sample points. This problem has been 

noticed in many fields including system identification [6] [7]. 

The rank minimization itself is a non-convex problem 

therefore difficult to solve. If there is a desired rank r for 

matrices Cpm, then the problem can be redefined as 

1 1
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It is desired to have r=1 for the lowest order realization of 

order np for each Hm. Then, the above problem can be solved 

based on 

1 1( ) 1 , (13)
c c c c

T
n n n nRank C C u v    

which means instead of considering matrix Cpm, two vectors 

upm and vpm can be considered. Therefore, the problem reduces 

to 

min ( ) ( )

subject to , , if , (14)

k d k

im jm im jm i j

H j H j

u u v = v a a
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where H(jω) is a function of upms and vpms. The formulation of 

the problem is as follows. All upms and vpms are put in one 

column as variable X as 

 
Fig. 3. Transmission line configuration 
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and F(X) is 
1
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where Hd(jω) is the data to be fitted and 
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Finally the minimization can be expressed as 

min ( )

subject to , , if , (18)im jm im jm i j

g X

u u v = v a a 

where g(X) = ∥F(X)∥2 . It should be noted that this problem is 

different from linear least square problem in the universal line 

model. This problem is a non-linear minimization problem and 

can be solved using gradient method. To do this, ▽g(X) 

should be calculated, i.e., 
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    The approach was tested on a three phase transmission line 

propagation matrix for the line configuration shown in Fig. 3. 

The results are obtained after a large number of iterations and 

the convergence rate is very slow. The reason is that the initial 

X is considered to have entries all equal to 0.1 and this results 

in two problems. First, due to the ( )k
ijf X structure, if all 

entries of initial vector X are the same, they remain the same 

during all iterations. The second problem is that the final 

residues are in a very wide range since the poles are from 1Hz 

to 1MHz. Therefore, starting from the initial conditions which 

have the same entry range makes the problem ill conditioned. 

This can be resolved by normalizing the residues by their 

corresponding poles as 

 
Fig. 4. Fitting result for rank one propagation transfer function matrix fitting 

with random equal initial condition for normalized residue C′pm and its 

vectors u′i and v′i where all elements of the initial vectors were considered to 

be in the range of (0,1) 

 
Fig. 5. Two different scenarios for comparing step response, (a): open circuit, 

(b): three phase short circuit 

 
Fig. 6. Time-domain simulation result of the proposed phase model for 

transmission line open circuit step response voltages at both sending and 

receiving voltages 
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where C′=Cpm/apm . Using this approach, the minimization 

converges much faster and the initial X is considered to be 

random to solve the first problem. The results of the 

minimization are shown in Fig. 4 which favorably match the 

data with an acceptable accuracy. 
 

IV.  TIME DOMAIN SIMULATION RESULTS 

To verify functionality of the method the transmission line 

in Fig. 3 is simulated with the proposed method based on a 

MATLAB code and compared to the PSCAD results. It should 

be noted that the same number of poles was used for 

approximation of the propagation function matrix in both 

cases. However, one third of the number of states is used in the 

proposed method which means reducing the computation by a 

factor of three, i.e., the same as the number of conductors. 

Two different scenarios are considered as shown in Fig. 5, 

i.e., open circuit and short circuit tests of the transmission line 

at the receiving end. The sending and receiving phase voltages 

are shown in Fig. 6 and Fig. 7 which accurately compare with 

the PSCAD results. Results for the short circuit test are 

depicted in Fig. 8 and Fig. 9 and also show good match with 

the PSCAD results. 

V.  CONCLUSION 

This paper presents an improved method for modeling of 

the transmission line propagation function. In this approach the 

characteristic admittance matrix is modeled in the same way in 

transmission line universal model, i.e., using vector fitting for 

transfer function matrix approximation. For the propagation 

function approximation, instead of using a simple 

overdetermined minimization which results in full-rank residue 

matrices, rank one minimization is used to enable minimal 

realizations with a smaller number of states for time domain 

integration of propagation matrix transfer function. This 

minimization problem was manipulated to obtain and 

demonstrate acceptable results and fast convergence by proper 

variable normalization. A case study system was considered 

and the results for both frequency-domain approximation and 

time-domain were presented. The results closely agree with 

those obtained from the PSCAD-based simulation results. 

Although the model has the advantage of less computation 

burden during simulation at the cost of longer fitting time. 

 
Fig. 7. Long snap shot of time domain simulation result of the proposed phase 

model for transmission line open circuit simulation results 

 
Fig. 8. Time-domain simulation result of the proposed phase model for 

transmission line three phase short circuit step response voltages at both 

sending and receiving voltages 

 
Fig. 9. Long snap shot of time domain simulation result of the proposed phase 

model for transmission line short circuit simulation results 
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