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Abstract-- The Jiles-Atherton (J-A) based current transformer 

(CT) core model provides accurate modelling of hysteresis and 

saturation effects and can effectively represent the remanence 

flux in CT cores. The disadvantage of the J-A CT is the relevant 

parameters are not easy to obtain. This paper develops a 

methodology to estimate the parameters for a J-A CT model 

from a B-H loop. The B-H loop is relatively easy to get from 

measurement or can be generated from an EMT digital 

simulation of a generic CT model using a B-H curve and other 

commonly available data. Validation of the proposed 

methodology has been performed by comparing the simulation 

results of the J-A CT model using the estimated parameters to 

the results using a generic CT model using the B-H loop as input. 
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I.  INTRODUCTION 

he Jiles-Atherton (J-A) based current transformer (CT) 

core model  accurately represents the remanence flux 

[1][2], the effects of which can be  critical to behavior of 

protective relays. The J-A CT model can also accurately 

represent long term saturation and hysteresis effects such as 

would occur with geomagnetic induced currents (GIC) 

entering a transformer [3]. Although its advantage has been 

well recognized and its simulation model has been developed 

in some simulation tools for over a decade, the J-A CT hasn’t 

been widely used in Electromagnetic Transient (EMT) based 

simulations. The main restriction on the use of the J-A based 

CT is that the parameters required by the model are often not 

available. The parameters are based on the physics of the core 

and not on the electrical characteristics familiar to the power 

system engineers and the electrical community as a whole.  

The parameters are also interlinked in such a way that the set 

of possible combinations can be quite large. Thus significant 

changes in the shape of the hysteresis loop may result from 

small parameter variations. 

The generic CT model that is widely used in EMT 

simulation tools is easy to model because it is not 
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computationally intensive and is easy to use since the input 

parameters are more commonly known. The downside to this 

model is that it may not be accurate for very low currents, 

there is no long-term remanence, and it was not developed for 

the interconnection of CT secondaries such as in a busbar 

differential protection scheme.  Therefore there is no 

possibility for interaction between multiple CT’s. 

The J-A CT would be used more in EMT simulations if the 

parameters needed by the model could be estimated from 

some parameters that are easier to obtain, such as the B-H or 

V-I curve for the core. These curves are normally provided by 

the manufacturer or can be created using measurements 

normally taken during on-site field commissioning. 

II.  SUMMARY OF THE MANUSCRIPT 

This paper develops a methodology to estimate the J-A CT 

core model parameters from a measured B-H loop. The EMT 

simulations of a generic CT model, with B-H or V-I curves as 

input, are used to produce the B-H loop. The B-H loop is in 

turn used as input for a least square algorithm to estimate the 

parameters (including a1,  a2,  a3,  and Ms) of the J-A CT. The 

work in this paper was conducted on an RTDS® real time 

digital simulator. The paper is organized as follows: section III 

briefly introduces the J-A CT model on the RTDS Simulator. 

Section IV presents the detailed methodology to estimate the 

J-A CT parameters based on the B-H loop. Section V provides 

validation of the methodology. Finally section VI gives the 

conclusion. 

The proposed method in this paper provides a method to 

easily obtain parameters for a superior CT model, thus 

allowing simulations to be undertaken which include a 

properly modeled long term remanence and interaction 

between CTs. The usefulness of this can be appreciated when 

testing high impedance bus differential protection schemes 

which require properly modeled interaction between coupled 

CT’s [4]. The varistor or MOV placed across the neutral 

branch of a high impedance differential scheme can add 

additional non-linear effects. The “original” J-A CT model is 

the one used in reference [4] and shown to give excellent 

agreement with recordings (including remanent flux effects) 

taken from a synthetic test bed. 

III.  INTRODUCTION OF THE JILES-ATHERTON CT MODEL 

Jiles and Atherton used a phenomenological based 

mathematical representation to accurately represent 

ferromagnetic material behavior in a soft magnetic material 

[1][5]. Equation (1) represents the relationship between the M-

H loop and B-H loop. 

T 
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Where He is effective field  and defined as 
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e
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, α 

is the inter-domain coupling, s
M

is the saturation 

magnetization. 
J-A modeled the saturation characteristic using a modified 

Langevin function to produce the familiar sigmoid type curve 

for 
)(

e
Hf

, giving the following equation. 
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where a is anhysteretic loss. 

Equation (3) and J-A theory produces 2 terms in M as 

follows: 
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The first term irr
M

is due to the pinning of magnetic 

domains by discontinuities in the material structure. The 

second term rev
M

 is due to domain wall bending in an 

elastic manner. J-A built upon these fundamental relationships 

to arrive at the final set of equations to construct the B-H and 

M-H loops in (5). 
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where k is irreversible loss, c is reversible/irreversible 

proportions,   is sign of dt

dH

. 

When the J-A algorithm was implemented for a CT model, 

the CT core characteristics could not be accurately modeled 

using the Langevin function [2]. The J-A CT model on the 

RTDS Simulator uses an improved anhysteretic function 

instead of the Langevin function which accurately models the 

shoulder area of the anhysteretic magnetization [2].  The 

details of the improved J-A model equations used in the RTDS 

Simulator are described as follows: 

𝑑𝑀
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Where an
M

is anhysteretic magnetization, α and c are 

constants, kmod is dynamic adjustment of the domain pining 

parameter, δ and kmod are defined as follows: 

𝛿 = 𝑠𝑖𝑔𝑛(𝐻 − 𝐻𝑝𝑟𝑒𝑣)                                                           (8) 

𝑘𝑚𝑜𝑑 = {
k(1 − β(

M

Ms
)
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k  , otherwise                                                           

 

 

The improved anhysteretic magnetization function is given 

by the following: 
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The improved anhysteretic magnetization function must 

have the following properties and will be satisfied, provided 

that
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The derivative M an with respect to H e is given by the 

following:  
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IV.  DETERMINATION OF HYSTERESIS PARAMETERS 

 The object in this paper is to extract the parameters for a J-

A CT model from a B-H loop. The B-H loop can be obtained 

from the manufacturer/field measurements or from digital 

simulation of a generic CT model using B-H curve input and 

plotting the B-H loop. 

Fig. 1 shows the flowchart of the estimation methodology 

used to obtain the J-A CT model parameters from a piecewise 

linear B-H curve. First, the B-H loop is obtained from the 

digital simulation of a generic CT model containing a 14 point 

B-H curve. Second, the parameters of the J-A CT are 

estimated with a Least Square fitting algorithm using data 

from the B-H loop. 

 

 



 

 

B-H loop of the generic CT 

Vrms-Irms pairs of points of an 
generic CT

A

Vrms-Irms Characteristic Points of Ordinary CT

 Saving the M-H plot of the 

saturated data in mpb format

Obtain the saved M-H loop point 

from the out file
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Use a loop to pick up  Man-He data
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B-H loop of J-A CT B

Validation: compare          and A B

 
Fig. 1.  Flowchart of the estimation methodology for parameters of a J-A CT model. It should be noted that the algorithm can also be performed using the B-H 

loop data from field measurements or manufacturer’s data.  

A.  Obtaining the B-H Loop Parameters 

In order to estimate the parameters for J-A CT, one needs to 

have a measured B-H loop as shown in Fig. 2. Ideally the B-H 

loop can be obtained from field measurements. An alternative 

way to obtain the B-H loop is from the digital simulation. It is 

relatively easy to get the point by point B-H curve or V-I 

reference curve from the manufacturer or by field 

measurements. Once we have the B-H or V-I curve of the CT 

to be modelled, EMT simulations can be co 

nducted using the generic CT model. The B-H loop can be 

obtained as a result of the simulation. In this paper, the B-H 

loop is obtained by EMT simulation of the generic CT on the 

RTDS Simulator. The core saturation characteristic is 

represented by the dynamic solution of an integer power series 

equation given as follows: 
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Fig. 2.  B-H loop 

B.  Determine the Saturation Magnetization MS 

The easiest parameter to obtain is the saturation parameter 

MS. It is often known for a particular material, so can be taken 

directly from the material data sheets. This parameter can also 

be obtained from the measured B-H (M-H) loop parameters. 

Equation (1) is used as a basis to convert the B-H loop data 

to M-H loop data with the following: 
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MS, saturation magnetization is the maximum value of M 

shown in Fig. 3. 
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Fig. 3.  M-H hysteresis loop 

C.  Determination of a1, a2, a3 

The most important procedure of the estimation is to 

calculate a1, a2, and a3 used in (10). In fact, the Man-He curve 

can be determined if Ms, a1, a2, a3 are known. 

From 
MH

e
H 

 the Man-He curve can be determined 

as shown in Fig. 4. Assuming α is at a default value, one can 

obtain the Man-He curve, in which He is the averaging point of 

the left side and right side of curve He as in Equation (14) and 

(15): 
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Where Man(n) is the value of anhysteretic magnetization Man at 

point n; He(n)_R is the H value of M-He curve(right side) at 

point n; He(n)_L  is the H value of M-He curve(left side) at 

point n. 
M
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Fig. 4.  Man-He hysteresis loop (n=4) 

 

Equation (16) can be obtained from (10), with a1, a2 and a3 

as unknowns, when Man and He is known: 
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And in which the following restriction needs to be satisfied: 
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Now estimates of a1, a2 and a3 are computed with a least 

square method. Six samples of Man and He data are used to 

compute a1, a2 and a3 as follows: 

Equation (17) is established with the six samples of Man 

and He in which there are 3 unknowns but 6 equations. 
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The 6 equations are defined into X and Y terms and the 3 

unknowns are solved using the least square solution. 
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Using the least square solution we have: 

       16
*

133

2

1

*
36

* 6363
x

Y

x
a

a

a

x
X x

T
x

T XX 



















 



        )18(
16

*
63

*

133

2

1

63

1

63 * 



































x
Y

x
X

x
a

a

a

x
T

x
T XX

 

The solution of (18) will be further checked by the restriction 

of
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.  If this restriction is met the 

solution is considered to be optimal. If the restriction is not 

met, 6 new pairs of data points are chosen and equation 18 is 

solved until the restriction 
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is 

satisfied. 

D.  Determination of Hysteresis Parameters c, α, k 

Reference [1] provided detailed descriptions on how to 

calculate the hysteresis parameters c, α, k in equation (6). 

According to [1], the coercivity is determined by the amount 

of pinning and hence by the parameter k. Modification of the k 

parameter will change the coercivity point Hc (the width of the 

hysteresis loop). 

Figure 5 shows the B-H loop with different k parameter 

values. Increasing k value in a reasonable range results in a 

larger coercivity point.  One can obtain the k value 

approximately by trial and error based on the comparison 

between the EMT simulation results of the J-A CT model and 

the known B-H loop. 

 
 

Fig. 5.  B-H loopwith different k value: Blue – B-H loop with K=2*10-5, Red 

– B-H loop with K=5*10-5 

 

According to [1], the remanence point Mr is dependent on α 

and other parameters. If the other parameters are known, the 

remanence can be used to calculate α [1]. Modification of the 

parameter α will change the remanence point and the 

inclination of the hysteresis loop. 

Fig. 6 shows the M-H curve with different α values. 

Basically a larger α value corresponds to a larger remanence 

point.  Similarly the value can be adjusted according to the 

remanence point of the hysteresis loop of the known M-H 

loop. 

 
 

Fig. 6.  M-H loop with different α value: Red - M-H loop with α=1.35*10-5, 

Blue - M-H loop with α=0.8*10-5 

 

The reversible component of magnetization due to reversible 

wall bending and reversible translation is determined in the 

model by the coefficient c. This can be calculated from the 

ratio of the initial normal susceptibility to the initial 
anhysteretic susceptibility [6].   According to the test results, 

parameter c does not contribute much to the B-H loop when 

the CT is saturated. So one can perform the above test and get 

the a1, a2, a3 , k  and α with c set at the default value, then 

adjust the value of c by comparing the known B-H loop and 

B-H loop from the simulation. Fig. 7 shows the B-H loops are 

almost identical with different c values. 

 
 

Fig. 7  B-H loop with different c value: Blue - B-H loop with c=0.1, Red - B-

H loop with c=0.2 

V.  VALIDATION 

 

The proposed methodology is validated by comparing the 

RTDS simulation results of J-A CT model with the estimated 

parameters (section IV.A) with the generic CT (section IV.B) 

with the B-H curve input. The simulation results demonstrated 

that the proposed methodology can effectively estimate 

parameters for a J-A CT. 

A.  Validate the calculations with a J-A based CT 

Fig. 8 shows the test case used for validation consisting of a 

source, bus, breaker, load and two J-A CT models used for 

comparison. The top J-A CT is used with the original data and 

the bottom J-A CT model is used with the estimated data. The 

3 phase breaker current is used as the CT primary current. 



 
 

Fig. 8.  Test case for parameter Comparison 

 

One can get the estimated hysteresis parameters through a 

RTDS RunTime Script programmed with the estimation 

algorithm. (Other platforms will have to program the 

estimation algorithm.) Table I shows the comparison between 

the original parameters and estimated parameters. 
TABLE I 

COMPARISON BETWEEN ORIGINAL PARAMETERS AND ESTIMATED 

PARAMETERS 

 a1 a2 a3 Ms 

Original 2784 3274 20978 1.72 

Estimate 2792.182 3291.53 20866.66 1.72 

 

It is obvious that the calculation result is very close to the 

original data. The simulation results of CTs with the original 

data and the estimated data in table I are compared. Fig. 9 and  

Fig. 10 show the waveform comparison of an original J-A CT 

model against a test J-A CT model using estimated parameters 

derived by the proposed method. The black curve is the 

original J-A CT model and the red curve is the estimated J-A 

CT model. The B-H loop, secondary current (Is), B(t) and H(t) 

are almost identical in the comparison. 

 

 
 

Fig. 9.  Zoomed Simulated B-H Loop Comparison 

 

 

 

 

  



 

 
 

Fig. 10.  Waveform Comparison of J-A CT with estimated parameters and Original J-A CT 

B.  Validate the calculations with the Generic CT 

The test case shown in Fig. 11 is similar to the test case shown in Fig. 8. The only difference between Fig. 8 and Fig. 11 is the 

top CT is a generic CT with B-H/Vrms-Irms data instead of the J-A CT with original data. 

 
 

Fig. 11.  Test case for parameter Comparison with Generic CT 

 

One can get the estimated hysteresis parameters through a 

RTDS RunTime Script programmed with the estimation 

algorithm. Parameter k, αand c are determined according to 



section IV.D (i.e., the coercivity, remanence point and B-H 

loop). Table II shows estimated J-A parameters with 

k=5.8X10-5, α=1.35x105, and c=0.1. 
TABLE II 

ESTIMATED J-A HYSTERESIS PARAMETERS OF GENERIC CT 

 a1 a2 a3 Ms 

Estimate 986.5068 1167.663 12097.973 1.55 

 

Fig. 12 and Fig 13. show the waveform comparison of a 

generic CT model and the test J-A CT model using estimated 

parameters derived from the B-H curve of the generic CT 

model. The black curve is the generic CT model and the red 

curve is the test J-A CT model. The B-H loop is almost 

identical except at the shoulder (knee point) where improved 

anhysteretic function is used in RTDS J-A CT model. The B-

H loop, secondary current (Is), B(t) and H(t) are almost 

identical in comparison.  

  
 

 

 

Fig. 12.  Zoomed Simulated B-H Loop Comparison of Generic CT

 

Fig. 13.  Waveform Comparison of J-A CT with estimated parameters and Generic CT 

VI.  CONCLUSIONS 

A new methodology has been developed to estimate the 

parameters for a J-A CT model. The method derives the 

parameters of J-A CT based on some commonly available B-H 

or V-I curves. The method has been implemented on the 

RTDS Simulator but can be implemented on other platforms. 

The simulation results demonstrated the proposed estimation 

algorithm gives accurate results, thus making it possible for 

the J-A CT to be more widely used in studies and simulations 

involving CTs [4] or other types of transformers [3]. 
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