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Abstract—This paper proposes a novel method for calculation 

of frequency dependent parameters for any arbitrary shaped 

cable based on a new integral equations formulation and its 

Method of Moment solution. The proposed approach accurately 

considers both skin and proximity effects. The computation of 

series impedance matrix using this method is described for a 

sector-shaped cable example. The frequency domain impedance 

calculations are compared with alternative techniques such as 

finite element and sub-conductor methods. Time domain 

simulation results for open and short circuit terminations are also 

compared with sub-conductor technique.   
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I.  INTRODUCTION 

ccurate modeling of cable systems in electro-magnetic 

transient (EMT) programs is becoming significant with 

the recent development of underground power transmission 

systems as a result of environmental policies in many 

countries.  

In power system transient studies, there are increased 

applications involved in modeling non-conventional cables 

such as pipe type cables, sector-shaped cables, umbilical 

cables etc. Compared with traditional coaxial cables, the 

electro-magnetic transient (EMT) modelling of such non-

conventional cables is challenging.  The accurate consideration 

of proximity effect as well as skin effect is required to 

calculate frequency dependent parameters for such 

configurations. 

This paper proposes a general approach for electromagnetic 

transient modelling of any arbitrary shaped multi-conductor 

cable.  Frequency dependent resistances and inductances of the 

cable are obtained using a Method of Moment (MoM) 

discretization of a novel single source integral equation [1]-

[2].  

The EMT modeling of pipe type cable based on MoM 

method is described in [3].  In this paper, the impedance 
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operator is analytically derived for circular domains; hence 

cables or cable bundles in which each cable is of circular 

shape can be only handled. For every other cross-section 

shape, a new surface impedance operator has to be created. 

However the proposed method is truly general in terms of the 

cross-sectional shapes while featuring the same number of 

MoM unknowns as [3].  

Alternatively, sub-conductor technique [4], [6] or finite 

element method [8] can be used to find parameters for non-

conventional cables. However above methods require 

significantly higher computational time and effort. For 100 

frequency samples, corresponding Z and Y matrices can be 

generated within minutes using proposed method. The sub-

conductor technique requires approximately half an hour and 

the finite element method (FEM) requires more than an hour.   

   The application of this technique is demonstrated using a 

sector shaped cable example. The series impedance (Z) 

matrices are compared with an alternative sub-conductor 

technique proposed in [4] and also with the FEM approach [8]. 

   The frequency domain characteristics are discussed and 

propagation modes are analyzed by plotting velocities and 

attenuation of the modes as a function of frequency.  The time 

domain results for step voltage excitation with linear 

impedance terminations are compared for the proposed 

method and the sub-conductor technique. 

 

II.  SURFACE-VOLUME-SURFACE ELECTRIC FIELD INTEGRAL 

EQUATION FORMULATION 

 

Consider a power cable consisting of cN  conductors of 

arbitrary cross-section. We denote the index identifying the 

conductor number as 1, , cNa . The contour bounding the 

cross-section of the a th conductor and the cross-section itself 

are indicated as Sa  and Sa , respectively. Under the quasi-

static approximation, we can write the traditional Volume 

Electric Field Integral Equation (V-EFIE) in terms of the 

volumetric current density j   
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frequency, i  is the imaginary unit, ρ  and ρ are position 

vectors to the observation and source points, respectively, and 

p.u.l.V  is the per unit length voltage drop along the conductor 

cross-section.  

If the conductivity s  is homogeneous for each of the 

conductors constituting the cable, the electric field inside the 

conductor satisfies the homogeneous Helmholtz equation. In 

[1], [2], this fact is taken into account in order to derive a 

novel single source Surface-Volume-Surface Electric Field 

Integral Equation (SVS-EFIE) in terms of the  unknown 

surface current density J  defined on the contours Sa  

bounding conductor’s cross-sections 
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where ( , )Ga
s ρ ρ  is Green’s function of the a th conductor 

medium 
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In (3), (2)

0H  is the second-kind Hankel function of zeroth 

order, and ka
s  is the wavenumber of a th conductor. 

The SVS-EFIE (2) can be conveniently written in the 

following operator form 
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The operators entering (4) are defined, as follows: 
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The SVS-EFIE (2) involves the integral operators that map 

the unknown surface current density from the conductor 

boundary Sa  to the conductor cross-section Sa  and back to 

the boundary for each a th conductor. Therefore, the Method 

of Moments (MoM) discretization of the SVS-EFIE requires 

both contour and surface meshes. Each conductor 

boundary Sa  is discretized with Ma  linear elements, and 

cross-section 
aS  – with Na  triangles. A detailed description 

of the MoM discretization of the SVS-EFIE (2) is given in our 

previous publications for a two-conductor [2] and co-axial 

cable [1] cases.  

After each of the integral operators is discretized, the 

SVS-EFIE (2) is reduced to a set of 

1 2 ...
cNM M M M  linear algebraic equations with M  

unknowns 
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where , ,

0,S S S S
Z Zs and ,S S

Zs  are the discretized versions of 

the SVS-EFIE contour-to-contour (5), surface-to-contour (6), 

and contour-to-surface (7) operators in a block form, 

respectively [2]. We will depict the overall matrix structure of 

the SVS-EFIE (8) for the example of a sectorial cable with an 

outer conductor ( 1a ) and three inner conductors 

( 2, 3, 4a ).The outer conductor 1a  has two contours 

1aS  and 
1bS  forming its “shell” cross-section.  

The discretized versions of the contour-to-contour 

operator ,S S
Zs , surface-to-contour operator ,

0

S S
Z , and 

contour-to-surface operator ,S S
Zs  are the matrices of the 

following form 
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The structure of the matrices is determined by the nature of 

the integral operator of the SVS-EFIE (2). The discretized 

version of contour-to-contour operator ,S S
Zs (9) and contour-



to-surface operator ,S S
Zs (11) correspond to the interactions 

inside a given conductor via full-wave Green’s function of the 

conductor medium (3). Therefore, only block-diagonal entries 

are present. Moreover, as frequency of the analysis grows, so 

does the sparsity of the block-entries in (9) and (11) due to 

exponential attenuation of the Green’s function (3). As the 

cross-sectional current becomes negligible beyond a few skin-

depths, some of the entries in (9), (10), and (11) can be 

preemptively zeroed out based on the tolerance  . It implies 

that all elements in the matrices ,S S
Zs (9) and ,S S

Zs (11) 

representing the interactions between the elements that are 

separated by a distance larger than L  will not be calculated 

and stored. 
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It is worth to note, that some entries in ,

0

S S
Z (10) can be 

zeroed out as well based on the structure of the 

matrix ,S S
Zs (11) after applying the skin-depth based tolerance 

criteria (12). 

The matrix form of the SVS-EFIE (8) is solved numerically 

for M unknown coefficients I  in the expansion of the surface 

current density on the conductor’s cross-section 

boundaries S . Then, N  samples of the volumetric current 

density j  in the cable cross-section S  can be obtained using 

the discretized contour-to-surface operator ,S S
Zs  (11) maps 

the auxiliary surface current density to the volumetric current 

in the cross-section of the conductor, as follows 

 

 , .S S
j Z Is   (13) 

 

The expressions for the actual matrix entries can be found 

in [2] for the discretization with pulse basis functions both on 

the conductor boundary S  and conductor cross-section S .  

 

 

III.  INCLUSION OF GROUND AND FORMULATION OF THE 

ADMITTANCE MATRIX  

The Z matrix formulated as discussed in section II 

represents the impedance due to skin and proximity effects of 

all the conductors in the sector-shaped cable. The impedance 

of the insulation and the ground are added to obtain full Z 

matrix as discussed in [4], [5]. The ground impedance is 

evaluated using the closed form approximate formula [7].  

The formulation of admittance matrix is described in 

reference [4] and hence not discussed here. 

IV.  EXAMPLE CASE STUDY 

An example case involving a sector-shaped cable is used to 

demonstrate the proposed method. The cable configuration 

and data [4] are shown in Fig 1 and Table 1 respectively. 
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Fig 1: Sector-shaped cable example 

 
TABLE I 

Cable Data 

Inner conductor radius  19 mm 

Sheath inner radius 25 mm 

Sheath outer radius 27 mm 

Cable outer radius 30 mm 

Inter-conductor distance, d 4.255 mm 

Inter-conductor conductivity 58000 S/mm 

Sheath conductivity 1100 S/mm 

Relative permittivity of  inner insulation 4.1 

Relative permittivity of  outer insulation 2.3 

 

The comparison of self and mutual impedances is shown in 

tables from I to IV. The finite element method and sub-

conductor results are obtained from [4], [8]. The impedance 

calculation using proposed MOM method is in a close 

agreement with the FEM approach and also with sub-

conductor technique.  

 
TABLE I 

SELF RESISTANCE COMPARISON 

Frequency 

(Hz) 

Resistance (Ω/km) Difference 

(MOM 

and FEM) 

 (%) 

Finite Element 

method 

Sub-

conductor 

Method 

Proposed 

MOM- 

method 

6 2.8400 2.8400 2.8420  0.0704  

60 2.8499 2.8499 2.8516 0.0597 

600 2.9675 2.9608 2.9672 0.0101 

6E+03 3.5250 3.5076 3.4979 0.7688 

60E+03 5.1505 5.2022 4.9690 3.5239 

 

 

 

TABLE II 

MUTUAL RESISTANCE COMPARISON 

Frequency 

(Hz) 

Resistance (Ω/km) Difference 

(MOM 

and FEM) 

 (%) 

Finite 

Element 

method 

Sub-

conductor 

Method 

Proposed 

MOM- 

method 

6 2.7825 2.7824 2.7843    0.0647   

60 2.7832 2.7833 2.7850   0.0647 

600 2.7804 2.7871 2.7847  0.1547 

6E+03 2.6946 2.7090 2.6941   0.0186 

60E+03 2.8882 2.7693 2.8299 2.0186 

 

 

 

 



TABLE III 

SELF INDUCTANCE COMPARISON 

Frequency 

(Hz) 

Inductance (μH/km) Difference 

 (%) 

(MOM 

and FEM) 

Finite 

Element 

method 

Sub-

conductor 

Method 

Proposed 

MOM- 

method 

6 232.02 229.98 232.2283 0.0898  

60 220.67 218.32 221.0065  0.1525 

600 156.80 155.35 157.0402 0.1532 

6E+03 120.40 121.61 120.7107 0.2581 

60E+03 105.09 107.42 105.6883 0.5693 

 
TABLE IV 

MUTUAL INDUCTANCE COMPARISON 

Frequency 

(Hz) 

Inductance (μH/km) Difference 

 (%) 

(MOM and 

FEM) 

Finite 

Element 

method 

Sub-

conductor 

Method 

Proposed 

MOM- 

method 

6 40.445 40.833 40.3621 0.2050  

60 40.191 40.207 40.1380 0.1319 

600 35.722 34.627 35.7320  0.0280 

6E+03 38.324 35.607 38.3511 0.0707 

60E+03 40.692 37.524 40.8166 0.3062 

 

The propagation constants  γ of the natural modes are defined 

as eigenvalues of √ZY matrix [5]. The attenuation coefficient 

 and the modal velocity v are defined as, 
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Where, f 2 , f is the frequency in Hz. Fig. 2 and 3 show 

the attenuation coefficient and the velocity characteristics of 

all modes.  It can be seen that mode 1 is a zero sequence mode 

with relatively high attenuation and low velocity. Mode 2 is a 

sheath to conductor mode and modes 3 and 4 are inter-

conductor modes. 
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Fig 2: Frequency dependence of attenuation constant α  
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Fig 3: Frequency dependence of modal velocity v  

 

 

The propagation and characteristic admittance matrices are 

calculated as described in [5]. The length of the cable is 

assumed to be 20 km. Fig 4 and 5 show the comparison of first 

column of the propagation matrix and the characteristic 

admittance matrix calculated using MOM method (solid lines) 

and the sub-conductor technique (‘+’ sign). The proposed 

MOM method is in a good agreement with sub-conductor 

method.  
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Fig 3: First column of the propagation matrix 
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Fig 4: First column of characteristic admittance matrix 

 

V.  TIME DOMAIN SIMULATION RESULTS 

Time domain simulations for open circuit and short circuit 

terminations are performed using PSCAD/EMTDC 

commercial software as shown in Fig. 5. The calculated Z and 

Y matrices are added to the transmission line model (Universal 

Line model [9]) through external file using the multiple-

frequency external input option. The cable is energized with a 

1 kV step voltage. 

 

Fig. 6 shows the induced voltage in the third conductor for 

open circuit termination for time period up to 0.01 sec. The 

simulation results from proposed method (solid lines) are 

compared with that of sub-conductor method (dashed line).The 

two methods are in a close agreement. Fig. 7 shows the 

sending-end current from the same excitation for short circuit 

terminations. Again the two waveforms are in a close 

agreement verifying the accuracy of the proposed MOM 

method. Note that the results from sub-conductor technique 

have been already verified with Numerical Inverse Lapalce 

Solution in [4]. 

 
Fig 5: Excitation and termination configurations in the time 

domain simulation. 
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Fig 6: Transient behavior of the induced voltage  
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Fig 7: Transient behavior of the sending-end current  

 

VI.  CONCLUSION  

The proposed MOM based method can be used to accurately 

simulate non-conventional cable configurations such as sector-

shaped cables. The frequency domain parameters from the 

proposed method are in a good agreement with alternative 

techniques such as the sub-conductor method and also finite 

element method. Also the time domain simulation results are in 

a close agreement with the proposed method. The main 

advantage of the method is that the computational time is 

significantly less compared with the above alternative 

techniques. Compared to the similar method discussed in [3], 

the proposed method is truly general in terms of the cross-

sectional shapes. 
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