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Abstract--The Phase-Domain Line Model, or Universal Line 

Model (ULM), is among the most advanced ones for time-domain 

analysis of EMTs in power lines and cables. This model must 

perform two convolutions, one involving the characteristic 

admittance matrix function 𝕐𝒄 and the other the transfer-

function matrix for traveling waves of currents ℍ. To perform 

these convolutions recursively, both matrices must be fitted 

rationally. In the case of matrix ℍ, previous identification and 

extraction of the travel-time factors is required. The impact of 

the various stages of the model build-up and execution on the 

final accuracy is assessed here by means of the Numerical 

Laplace Transform (NLT) technique. It is reported here that the 

major accuracy loss is related to the matrix-ℍ convolutions and 

particularly to the proper identification of the line travel-times. A 

non-iterative method based on the NLT is proposed here for 

travel-time identification. 

 

Keywords: Electromagnetic transients, time delays, impulse 

response, compensation, ULM, Laplace, NLT.  

I.  INTRODUCTION 

lectromagnetic transient (EMT) analysis and simulation 

of power systems often requires accurate models of power 

transmission lines and cables. Nowadays the Phase-

Domain Line Model, also known as the Universal Line Model 

(ULM) [1], is perhaps the most advanced and used of its class. 

This model is based on the principle of traveling waves and its 

implementation in EMTP-type programs requires the numeric 

evaluation of two convolution processes, one that involves the 

characteristic admittance matrix 𝕐𝑐 of the line and the other 

involving the line transfer matrix-function ℍ for the traveling 

waves of currents [1,2]. 

To perform the required convolutions in a numerically 

efficient manner, matrices 𝕐𝑐 and ℍ must be first 

approximated by rational functions (or polynomial matrices) 

[3]. This usually is accomplished with the Vector Fitting (VF) 

utility [6]. The rational approximation of ℍ requires, in 

addition, the previous identification of the characteristic 

travel-times of the line and the subsequent extraction of their 

related delay-factors from the elements of ℍ. 

Once the rational representations of 𝕐𝑐 and ℍ are obtained, 

the associated convolutions can be conveniently represented in 

state-space as sets of ordinary differential equations (ODEs). 

For their solution inside ULM, these ODEs are subsequently 
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converted into difference equations through the application of 

a numerical integration rule which for both, the EMTP and the 

ULM, usually is the trapezoidal rule [2]. 

This paper is concerned with the numerical accuracy of 

EMT simulations of lines and cables through the ULM; that is, 

under the assumption of ℤ and 𝕐 line matrices being accurate, 

what is the numeric error level introduced by the ULM in the 

simulated time-domain transient waveforms? To answer this, a 

commercial grade implementation of the ULM is compared 

against a frequency-domain line model which is solved 

through the Numerical Laplace Transform (NLT) technique 

[5,14,15]. The latter technique has the advantage of its 

numerical accuracy being well-determined and amenable of 

being controlled to a large extent. For the purposes of this 

paper, the accuracy of the NLT-based line model is tuned to 

an accuracy of 109; that is, the relative error-level. This is 

accomplished using a number of N=219 (524 288) samples for 

both, the time and the frequency ranges [5]. The comparison 

between the NLT and the EMTP-ULM models shows that the 

accuracy of the latter is in the order of 102; that is, about 1 % 

accuracy. It is thus considered here that this level must be 

improved further. 

Subsequent analysis is performed in this paper using the 

NLT technique to pin-down the major source of error in the 

ULM. The following aspects are analyzed here: 1) rational fit 

of 𝕐𝑐, 2) identification of line travel-times, 3) rational fit of ℍ 

and 4) numerical integration of the convolution related ODEs. 

It is found here that the major loss of accuracy in the ULM is 

on the identification of the line travel-times and that this also 

has a bad impact on the accuracy of the rationally fitted ℍ 

matrix. 

Previous to this paper, it has been reported at reference [7] 

that the identified and extracted travel-times have an impact 

on the accuracy of the fitting of ℍ. An iterative method based 

on Brent´s optimization is thus introduced in [7] to determine 

the travel-time values that minimize the rms error in the fit of 

ℍ by VF. In this paper a new methodology is introduced to 

compensate an initial travel-time estimate to a value that 

increases substantially the accuracy of ULM-generated 

transient waveforms. This methodology is based on the NLT 

technique and a major advantage upon the one based on 

Brent´s method is that it is non-iterative. When applied to the 

EMTP-ULM, the new methodology results in an accuracy 

increase of the time domain responses from 102 to almost 

104. Mention is made here to the fact that, with respect to the 

travel-time obtained with Brent´s method, the one determined 

with the new methodology not always results in better fits for 

ℍ (i.e., lower VF defined rms errors); nevertheless, it usually 

results in more accurate time-domain transient responses. 

E 



II.  THE PHASE-DOMAIN LINE MODEL 

A.  Model Equations 

As most power-line models for EMT analysis, the ULM is 

based on the following frequency-domain form of the 

Telegrapher Equations: 

 
𝑑𝕍

𝑑𝑥
= −ℤ𝕀     and     

𝑑𝕀

𝑑𝑥
= −𝕐𝕍 (1) 

where 𝕍 and 𝕀 are the respective vectors of voltage and 

current phasors along the line conductors, ℤ and 𝕐 are the 
respective matrices of series impedances and of shunt 
admittances, both in per unit length. These two matrices 
are of order 𝑁𝑐𝑁𝑐 for a line with 𝑁𝑐  independent 
conductors. 

Given a line-segment of length “𝑙”, as the one depicted in 

Fig. 1a, the solution of (1) in terms of traveling waves of 
currents is expressed as follows [1,2]: 

 
𝕀0 = 𝕐𝑐𝕍0 −ℍ[𝕀𝑙 + 𝕐𝑐𝕍𝑙] (2) 

𝕀𝑙 = 𝕐𝑐𝕍𝑙 −ℍ[𝕀0 + 𝕐𝑐𝕍0] (3) 

 

with sub-indexes “0" and "𝑙" indicating the values of vectors 𝕍 

and 𝕀 the respective segment-ends 𝑥 = 0 and 𝑥 = 𝑙. 𝕐𝑐 and ℍ 

are the respective matrices of characteristic admittances and of 

propagation transfer-functions for the traveling waves of 

currents [1,2]: 

 

𝕐𝑐 = √𝕐ℤ ℤ
−1 = ℾ ℤ−1 (4) 

 

ℍ = 𝑒−√𝕐ℤ𝑙 = 𝑒−ℾ𝑙. (5) 

 

One way to rewrite (2) which is more convenient in the ULM 

context is as follows [2]: 

 

𝕀0 = 𝕀𝑠ℎ,0 − 𝕀𝑎𝑢𝑥,0 (6) 

with 
𝕀𝑠ℎ,0 = 𝕐𝑐𝕍0 (7) 

𝕀𝑎𝑢𝑥,0 = ℍ𝕀𝑟𝑓𝑙,𝑙 (8) 

𝕀𝑟𝑓𝑙,𝑙 = 𝕀𝑙 + 𝕐𝑐𝕍𝑙 (9) 

 
where 𝕀𝑟𝑓𝑙,𝑙 is the vector of currents being reflected at terminal 

"𝑙". An equivalent expression for (3) in the form of (6) is 

obtained by exchanging sub-indexes “0” and "𝑙" in relations 

(6) to (9). Expressions (2) and (3) lead to the circuit model 

depicted in Fig. 1b for the line segment under consideration. 

The ULM requires the representation of matrices 𝕐𝑐 and ℍ 

by rational (or polynomial) forms. The rational approximation 

of 𝕐𝑐 is as follows [1,2]: 

𝕐𝑐 ≅ 𝔾0 +∑
𝔾𝑘
𝑠 − 𝑝𝑘

𝑁𝑦

𝑘=1

 (10) 

 

where 𝑁𝑦 is the order of the rational approximation, 𝑝𝑘 is the 

𝑘 − 𝑡ℎ pole, 𝔾𝑘 is the 𝑘 − 𝑡ℎ matrix of residues associated to 

𝑝𝑘 and 𝔾0 is a matrix of constants obtained as the limit of 𝕐𝑐 
when 𝑠 ⟶ ∞. The poles of 𝕐𝑐 are determined from its trace. 

 
a) 

 
b) 

Fig. 1.a) Multiconductor Transmission Line-Segment, b) Equivalent circuit in 

the frequency domain for the line-segment. 

 
The rational approximation of ℍ is more elaborate than the 

one of 𝕐𝑐. The reason being that all the elements in ℍ contain 

combinations of all modal-delay factors of the line. It is thus 

necessary to decouple and to extract every single delay as 

follows [7]: 

 

ℍ =∑ℍi

𝑁𝑚

𝑖=1

≅∑[∑
ℝ𝑖,𝑘
𝑠 − 𝑞𝑖,𝑘

𝑁ℎ,𝑖

𝑘=1

]

𝑁𝑚

𝑖=1

𝑒−𝑠𝜏𝑖 (11) 

 

where 𝑁𝑚 also corresponds to the number of propagation 

modes in the line and 𝑁ℎ,𝑖 indicates the order of the rational-

approximation for the 𝑖 − 𝑡ℎ mode (eigenvector), 𝑞𝑖,𝑘 is the 

𝑘 − 𝑡ℎ pole for the 𝑖 − 𝑡ℎ mode, ℝ𝑖,𝑘 is the matrix of residues 

corresponding to the 𝑞𝑖,𝑘 pole, 𝜏𝑖 is the travel-time of the     

𝑖 − 𝑡ℎ mode. The technique used in the rational synthesis of 

𝕐𝑐 and ℍ is Vector Fitting (VF) [6]. The term ℍi in (11) 

corresponds to the propagation function for the 𝑖 − 𝑡ℎ mode 

and, for its rational fitting, it can be determined from (5) 

through modal analysis methods. Details of this are given in 

[2]. 

B.  Model Equations 

Frequency-domain expressions (7) and (8) correspond in 

time-domain to the convolution terms to be performed by the 

ULM. Their state-space representation is obtained by first 

introducing (10) and (11) into (7) and (8) as follows: 

 

𝕀𝑠ℎ = 𝔾0𝕍 +∑𝕎𝑘; 

𝑁𝑦

𝑘=1

 𝕎𝑘 =
𝔾𝑘
𝑠 − 𝑝𝑘

𝕍 (12) 

𝕀𝑎𝑢𝑥 =∑∑𝕏𝑖,𝑘

𝑁ℎ,𝑖

𝑘=1

𝑁𝑚

𝑖=1

;  𝕏𝑖,𝑘 =
ℝ𝑖,𝑘𝑒

−𝑠𝜏𝑖

𝑠 − 𝑞𝑖,𝑘
𝕀𝑟𝑓𝑙 (13) 

 

Then, by applying the inverse Laplace transform in (12) 



and (13): 

𝕚𝑠ℎ = 𝔾0𝕧 +∑𝕨𝑘

𝑁𝑦

𝑘=1

;          
𝑑𝕨𝑘
𝑑𝑡

= 𝑝𝑘𝕨𝑘 + 𝔾𝑘𝕧 (14) 

𝕚𝑎𝑢𝑥 =∑∑𝕩𝑖,𝑘

𝑁ℎ,𝑖

𝑘=1

𝑁𝑚

𝑖=1

;     
𝑑𝕩𝑖,𝑘
𝑑𝑡

= 𝑞𝑖,𝑘𝕩𝑖,𝑘 + ℝ𝑖,𝑘𝕚𝑟𝑓𝑙
′  (15) 

 

Note that sub-indexes 0 and 𝑙 have been omitted in 

expressions (12)-(13), as well as in (14) and (15). This is to 

keep mathematical notation simple. The expressions (14) and 

(5) are the basis for the ULM and correspond to two set of 

ODEs. 

III.  FREQUENCY DOMAIN LINE MODEL 

The line segment at Fig. 1a can be considered as a two-port 

network with the following nodal representation [8, 9]: 

 

[
𝕀0
𝕀𝑙
] = [

𝔸 𝔹
𝔹 𝔸

] [
𝕍0
𝕍𝑙
] (16) 

 

where 

 

𝔸 = cosh(ℾ𝑙)𝕐𝑐, (17) 

𝔹 = −csch(ℾ𝑙)𝕐𝑐 . (18) 

 

For the purposes of this paper, expressions (16)-(18) are 

related as follows to the line representation at (2) and (3) that 

is in terms of the 𝕐𝑐 and ℍ matrices [10]: 

 

[
𝕀0
𝕀𝑙
] = [

𝕐11 𝕐12
𝕐21 𝕐22

] [
𝕍0
𝕍𝑙
] (19) 

with 

 

𝕐11 = 𝕐22 = (𝕌 − ℍ
2)−1(ℍ2 + 𝕌)𝕐𝑐 (20) 

𝕐12 = 𝕐21 = (𝕌 − ℍ
2)−1(−2ℍ)𝕐𝑐. (21) 

IV.  TIME DELAY IDENTIFICATION 

Accurate rational approximations require that fitted 

functions are of minimum phase. Transfer matrix function ℍ 

is not minimum phase since it includes all the line-mode 

delays 𝜏1, 𝜏2, . . . , 𝜏𝑁𝑐. These delays must thus be identified 

and extracted from the ℍ matrix by expressing it as follows: 

 

ℍ =∑ℍ̂𝑖𝑒
−sτi

𝑁𝑚

𝑖=1

≅∑𝑒−sτi∑
ℝ𝑖,𝑘
𝑠 − 𝑞𝑖,𝑘

𝑁ℎ,𝑖

𝑘=1

𝑁𝑚

𝑖=1

 . (22) 

 

Comparing (11) and (22) it follows that  

 

ℍi = ℍ̂𝑖𝑒
−sτi (23) 

 

and ℍ̂𝑖 is minimum phase matrix function. It is thus clear that 

the terms ℍ̂𝑖 are the ones to be fitted rationally. Let            

H𝑖 = H𝑖(𝜔) denote any nonzero element of ℍ𝑖. According to 

Bode’s formula, for a minimum phase function the magnitude 

|H𝑖| and its phase 𝜑𝑖(𝜔) are related as follows: 

𝜑𝑖(𝜔) =
𝜋

2

𝑑(ln|H𝑖(𝜔)|)

𝑑(lnω)
|
𝜔=𝛺𝑖

+ 𝛥𝑖(𝜔) (24) 

 

with 

 

𝛥𝑖(𝜔) =
1

𝜋
∫ (|

𝑑(ln|H𝑖|)
𝑑𝑢𝑖

| − |
𝑑(ln|H𝑖|)
𝑑𝑢𝑖

|
𝑢=0

) 𝑙𝑛 (𝑐𝑜𝑡ℎ
|𝑢𝑖|

2
)𝑑𝑢𝑖

+∞

−∞

 (25) 

 

and 

𝑢𝑖 = 𝑙𝑛
𝛺𝑖
𝜔
 (26) 

 

𝛺𝑖 above corresponds to the frequency at which               

|H𝑖| = 0.1|H𝑖(𝜔)||𝜔=0. The phase angle at this frecuency 

provides a good estimate as follows for the 𝑖 − 𝑡ℎ modal-

delay to be extracted from ℍ𝑖 [4]: 

 

𝜏𝑖 =
𝑙

𝑣𝑖(𝛺𝑖)
+
𝜑𝑖
𝛺𝑖
 (27) 

 

here 𝑣𝑖 is the 𝑖 − 𝑡ℎ mode velocity and 𝑙 is the transmission 

line-length. 

V.  TEST CASES 

Consider a single phase transmission line being connected 

as it is shown in Fig. 2. Table I provides the line dimensions, 

as well as its electric properties. At 𝑥 = 0 the line is connected 

to an ideal voltage source that injects a voltage unit step and at 

𝑥 = 𝑙 the line is open-circuited. The line transient response at 

𝑥 = 𝑙 is first obtained with the NLT using 524 288 frequency 

samples to attain a numeric accuracy of 109. This transient 

response is plotted in Fig. 3 and it is adopted here as the 

reference to evaluate the results obtained from four other tests 

that are described next. 

 

 
Fig. 2. Transmission line connections. 

 

TABLE I 

Line Data 

Line length 50 km 

Conductor height 10 m 

Nr. of phases 1 

Conductor radius 0.0158 m 

Nr. of condutors in bundle 2 

Bundle radius 0.20 m 

Conductors resistivity 3.21e-8 -m 

Ground resistivity 100 ohm-m 

Ground relative permittivity 1 



 

Fig. 3. Transient response obtained with the NLT. 

A.  Test Nr. 1 

This test consists in obtaining the transient waveform at 

𝑥 = 𝑙 for the line connection depicted in Fig. 2 by means of 

the ULM in EMTP-RV, as well as in its comparison with the 

NLT results. Figure 4 provides a plot for the relative errors of 

the EMTP-ULM waveform where one can observe that the 

error level is around 102. 

B.  Test Nr. 2 

Now, the transient response of the line depicted at Fig. 2 is 

obtained again through the NLT technique. However, this time 

the analytic expression of 𝕐𝑐 at (4) is replaced by its rational 

approximation obtained with VF as in expression (10). The 

transient response so obtained is compared against the 

reference one at Fig. 3. The plot of relative differences 

between these two responses is provided in Fig. 5. Note from 

this figure that the difference level is below 1014. One can 

thus conclude that the rational approximation of 𝕐𝑐 has nil 

effect on the overall accuracy of the ULM. 

C.  Test Nr. 3 

This test consists in obtaining the transient response of the line 

in Fig. 2 again with the NLT. This time now, only the analytic 

expression for ℍ as in expression (5) is replaced by its rational 

fit as in (11). This rational fit, along with the estimated travel-

time, is as provided by the EMTP-ULM . The transient 

waveform so obtained is compared with the reference one in 

Fig. 3. Figure 6 provides the error plot for the waveform 

obtained with fitted ℍ. Note that the error level is around the 

102 figure which is similar to the one in Fig. 4. One can thus 

conclude from this result that the accuracy loss in the EMTP-

ULM is mostly due to the rational approximation of ℍ, along 

with the estimated line travel-time. 

D.  Test Nr. 4 

The final test consists in obtaining the transient response 

for the line at Fig. 2 through the NLT technique with rational 

approximations for both, 𝕐𝑐 and ℍ. The transient waveform 

being obtained is now compared with the one from the EMTP-

ULM as in Test Nr. 1. Figure 7 provides the relative hat the  

 
Fig. 4. Error level for the EMTP-ULM transient response. 

 

 

Fig. 5. Differences between the reference waveform and the one obtained with 

NLT and the rational fit of 𝕐c. 

 

 

Fig. 6. Error level corresponding to the application of rationally fitted ℍ. 

 

 
Fig. 7. Relative differences between transient waveforms obtained with 

EMTP-ULM and NLT with rational fits of 𝕐𝑐 and ℍ. 
 

difference level is in the order of 106 (i.e., one millionth). 

One can thus conclude that the accuracy loss in the EMTP-

ULM has been replicated with the NLT-based line model. One 

can also conclude from this result that the accuracy loss due to 

the numeric integration of the state-space ODEs is nil too. 
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VI.  COMPENSATING TRAVEL-TIME ESTIMATES 

The estimation of line travel-times is essential to attain an 

accurate fit of the ℍ transfer matrix. Figure 8 shows for 

instance the rational fit of ℍ obtained for the single-phase line 

at section V under two different travel-time estimates: 𝜏0 and 

𝜏1. The first one is obtained with the conventional method 

applying expression (27). The second one has been obtained 

here by a trial-and-error process. Figure 8 illustrates the fact 

that a rational approximation of ℍ being based on the 

conventional travel-time estimate 𝜏0 from (27) is not optimal. 

According to the figure, the one based on 𝜏1 > 𝜏0 actually is 

more accurate. Table II provides the rms errors in the rational 

adjustments of ℍ based on the travel-time estimates 𝜏0 and 𝜏1. 

 
Fig. 8. Rational Fitting of ℍ with 𝜏0 and with 𝜏1 > 𝜏0 

 
TABLE I 

Time Delays 

𝜏 𝜏0=1.668419367360679e-4 𝜏1=1.693489792999174e-4 

ℰ𝑟𝑚𝑠 2.983357406488400e-6 8.594404292141444e-7 

 

A more convenient alternative to the trial-and-error process 

previously used for the determination of 𝜏1 is the systematic 

method proposed at reference [7]. This is an iterative process 

based on Brent’s optimizatio  n method that searches for the 

travel-time estimate that minimizes the rms error level at the 

rational approximation of ℍ. Another non-iterative method is 

proposed here next. This new method aims at reducing the 

error in the time-domain transient response of the line model 

and it is based on the NLT technique. 

It is well-known that if a transfer function in the “s” 

frequency-domain, say 𝐻(𝑠), represents a time-invariant 

linear system, its inverse Laplace transform yields the 

system’s impulse response ℎ(𝑡): 

𝐻(𝑠)
ℒ−1

→  ℎ(𝑡) 
Let 𝜏0 be a first estimate of a line travel-time being 

obtained perhaps by (27), and let ℍ̂ represent the line 

propagation function with the travel time 𝜏0 being extracted as 

follows: 

ℍ̂ = ℍ𝑒𝜏0𝑠 

Now, a rational approximation of ℍ̂ is obtained through VF as 

ℍ̂𝑓𝑖𝑡. Figure 9 shows the impulse responses derived from 

applying the inverse NLT to both functions ℍ̂ and ℍ̂𝑓𝑖𝑡. One 

can observe at this figure that the impulse response obtained 

from ℍ̂𝑓𝑖𝑡 has been delayed slightly with respect to the one 

from ℍ̂. This is a side-effect from the rational fitting process 

which should be compensated to decrease numeric errors with 

the convolution processes related to the line ℍ matrix. The 

time compensation-term, being denoted here as 𝜏′, could be 

obtained in principle as the time difference between the 

maximum values of the two impulse responses. Nevertheless, 

it should be considered that the impulse responses, by being 

obtained through the NLT, are time-discretized and their 

resolution is limited. Nevertheless, to obtain a better estimate 

of the compensation term the resolution of the impulse 

responses can be increased through an interpolation process. 

Here, the maximum sampled value of each impulse is first 

detected; then, each maximum point is used along with its four 

closest sample points to produce a fourth order polynomial. 

The time difference between the two polynomial maxima 

provides a better estimate for the needed compensation time. 

Figure 9 also includes the impulse response obtained from 

ℍ̂𝐸𝑀𝑇𝑃; that is,the rational approximation of ℍ̂ obtained from 

the EMTP-ULM. 

Travel-time estimate 𝜏0 is thus compensated by adding the 

previously determined term 𝜏′: 
 

𝜏1 = 𝜏0 + 𝜏
′. (28) 

 

The new travel-time value 𝜏1 is further used to obtain a 

better rational approximation ℍ̂𝑓𝑖𝑡. Figure 10 shows the new 

impulse-response plot from ℍ̂𝑓𝑖𝑡 . As the new values of 𝜏1 and 

ℍ̂𝑓𝑖𝑡 are applied with the ULM, the accuracy of its transient 

responses is increased. Figure 11 provides the relative error 

plot for the Test Nr. 4 from section V as the new values of 𝜏1 

and of ℍ̂𝑓𝑖𝑡 are used with the EMTP-ULM. Note that the error 

plots for Test Nr. 1 (EMTP-ULM without delay 

compensation) are also included in this figure from 

comparison purposes. The comparison shows that the 

technique being proposed here increases the numeric 

accuracy-level of the ULM in more than an order of 

magnitude. 

 
Fig. 9. Impulse response with uncompensated 𝜏0 
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Fig. 10. Impulse response with compensated 𝜏1 = 𝜏0 + 𝜏

′ 

 

 
Fig. 11. Improvement in the overall error-level of the ULM by the proposed 

compensation technique. 

VII.  CONCLUSIONS 

The numerical accuracy of the phase-domain line model 

(ULM) has been evaluated in this paper by means of the 

Numerical Laplace Transform technique. For this purpose, the 

NLT has been tuned-up for an accuracy of 109. This has 

required the use of a number of N=219 samples in both, the 

time-domain and the frequency-domain range. Evaluation of 

commercial-grade implementations of the ULM has been 

performed by comparing its time-domain transient responses 

with those obtained from the NLT technique. Although the 

ULM version used in this study is the one in EMTP-RV 

version 2.5, similar results have been obtained with the one in 

PSCAD-EMTDC. 

First, it has been found that the overall numerical accuracy 

of the ULM is around 102. Then, the following four aspects 

of the ULM implementation have been evaluated in terms of 

their impact on the accuracy of the ULM time-domain results: 

1) the rational fit of 𝕐𝑐, 2) the identification of line travel-

times, 3) the rational fit of ℍ and 4) the numerical integration 

of the convolution related ODEs. This analysis has shown that 

both, the rational fit of 𝕐𝑐 and the numerical integration of the 

state-space ODEs do not have practically a negative impact on 

the accuracy of the ULM. In fact, the major loss in accuracy 

has been found to be associated to the identification of line 

travel-times. In addition, their proper identification is crucial 

to attain an accurate rational fit of matrix ℍ. 

The standard method to identify line travel-times is by a 

heuristic method based on a formula by Bode that relates 

magnitude and phase for minimum-phase transfer functions 

[7]. Travel-times obtained with this method can be refined 

further as proposed in [7] through an iterative method based 

on Brent’s optimization; this is used to decrease the VF-

defined rms error in the rational approximation of ℍ. As an 

alternative, a non-iterative method has been proposed in this 

paper to compensate first approximations of travel-times. This 

new method is based on the NLT technique and it has been 

found here that, when applied to the ULM, the so obtained 

compensated travel-times result in an accuracy increase of the 

time domain transient responses from 102 to almost 104. 

Even though these results are encouraging, these authors 

consider that further research still is needed to improve the 

overall accuracy of the ULM. 

VIII.  APPENDIX 

EMT analysis in time-domain involves the operations of 

integration, differentiation and convolution. An advantage 

achieved in frequency-domain is that these operations become 

algebraic. If 𝑋(𝑠) is the Laplace transform of 𝑥(𝑡) [5] 

 

𝑋(𝑠) = ∫ 𝑥(𝑡)𝑒−𝑠𝑡𝑑𝑡.
∞

0

 (29) 

 

The inverse Laplace transform is defined as [5, 14] 

 

𝑥(𝑡) =
1

2𝜋
∫ 𝑋(𝑠)
𝑐+∞

𝑐−∞

𝑒𝑠𝑡𝑑𝑠. (30) 

 

A numerical approximation of (30) is as follows [5, 14]: 

 

𝑥(𝑛) =
𝑒𝑐𝑛∆𝑡

∆𝑡
{
1

𝑁
∑ 𝑋𝑚𝑒

2𝜋𝑗𝑚𝑛/𝑁

𝑁−1

𝑚=0

} (31) 

 

where 𝑁 is the number of samples used to describe 𝑋(𝑠); 
 

𝑋𝑚 = 𝑋(𝑐 + 𝑗𝑚∆Ω), 
 

𝑥(𝑛) = 𝑥(𝑛∆𝑡) 
and 

∆Ω =
2𝜋

𝑁∆𝑡
 

 

note that the term into a brackets in (31) is the discrete Fourier 

transform (DFT) of 𝑋𝑚 [12], this is evaluated directly by the 

Fast Fourier transform algorithm (FFT). Therefore (31) can be 

expressed by: 

 

𝑥(𝑛) =
𝑒𝑐𝑛∆𝑡

∆𝑡
𝑖𝑓𝑓𝑡{[𝑋(𝑐 + 𝑗𝑚∆Ω) × 𝜎𝑚(𝑚∆Ω)]𝑚=0

𝑁−1 } (32) 
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where 𝜎𝑚 is a window function used to decrease the error 

known as Gibbs’; This error is inflicted by the truncation of 

the integral in (30) [12]. Aliasing error minimization is 

attained here by a proper choice of damping coefficient "𝑐". 

This coefficient is calculated as follows [5]: 

 

𝑐 = −[𝑙𝑜𝑔𝑒(𝜖𝑟𝑒𝑙)]/𝑇 (33) 

 

where 𝑇 is the maximums observation time of the transient 

and 𝜖𝑟𝑒𝑙 is the targeted relative error. Wedepohl reports in [15] 

that the 𝜖𝑟𝑒𝑙 can be calculated by the following relation 

 

𝜖𝑟𝑒𝑙 = 1 𝑁
𝑏 ,          1 < 𝑏 < 2.⁄  (34) 

 

This criterion has been determined by a trial-and-error 

process. 
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