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Abstract- In this paper, resonance effects in transformer 

windings are thoroughly investigated and analyzed. The 
resonance is determined by making use of an accurate approach 
based on the application of the impedance matrix of a 
transformer winding. The method is validated by a test coil and 
the numerical results are verified by an ATP-EMTP model. 
Further analysis is applied on a transformer winding for which 
the inductance and the capacitance matrix as well as the winding 
losses are previously determined. By having determined the 
amplification factor, it can be found the location where the most 
severe transients may occur. It is also shown that maximum 
resonance overvoltage depends on the duration of the excitation 
and its resonance frequency. 

Keywords: Resonance, overvoltages, transformer winding, 
voltage distribution, amplification factor.  

I.  INTRODUCTION 
RANSFORMERS are important devices which are 
inevitable for the existence and the operation of power 

systems. The study of transient behavior of transformer 
voltages and currents is important for transformer designers 
and system planners, in order to know the interaction between 
the transformer and the system during different disturbances.  
Transformers may normally possess more resonance (natural) 
frequencies, which exist because transformer windings and 
coils can be seen as a number of series inductances and shunt 
capacitances. When a transformer is excited by a voltage that 
oscillates with a frequency equal to some of the resonance 
frequencies, a resonance occurs. During this process, the total 
winding impedance is determined by the coper losses of the 
transformer winding. Hence, the resonance is a phenomenon in 
which the terminal transformer impedance is fully resistive and 
the imaginary impedance part is equal to zero. In this case, the 
total impedance becomes either minimum (series resonance) or 
maximum (parallel or anti-resonance). In case of a series 
resonance, the transformer is exposed to high overvoltages 
voltages, and the voltage distribution in the winding is non-
linear since winding capacitances cannot be ignored. The 
evaluation of this distribution is important in order to know, 
which of the windings experience the highest stresses and 
under which conditions; lightning or switching. One important 
parameter that provides insight about voltage amplitudes along 
the winding is the amplification factor. This parameter was 
studied in [1]. During non-standard waves, resonance 
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overvoltages may take different values.  The analysis is 
performed to a single transformer even though the procedure is 
valid for multi- transformer windings as long as the impedance 
matrices, the elements of which are frequency dependent, are 
accurately determined.  
 
Nowadays different types of models are applied to study 
transformer transients. The powerful vector fitting model, 
which is very accurate belongs to the group of blackbox 
modeling [2]. Its application depends on the measured 
admittance matrices within broad frequency range. A model 
based on 2 port network representation by making use of a 
Frequency Response Analysis (FRA) is another example of  
an efficient black box approach [3]. Another types of models 
are white box models. These are numerical models that make 
use of inductance-, capacitance- and resistance matrices. The 
advantage of the white box models is that transient analysis is 
performed within broad frequency range. However, the 
disadvantage is that the accuracy strongly depends on the 
accuracy of computed parameters, particularly inductance and 
capacitance matrix as well as losses, which are frequency 
dependent [4], [5], [6]. Finally, the last types of models are 
gray box models. These models are built in EMTP-based 
software packages, and some transformer parameters 
previously determined by white box model can be tuned to the 
measured values (black-box). In this way, inaccuracies of 
white box model can be eliminated.  
In this work, an accurate modeling of the transformer winding 
based on the nodal admittance matrix is presented. Firstly, the 
modeling approach is described and applied to a transformer 
winding for which the parameters are known. Besides, the C-, 
L- and R-matrices are with constant parameters, so the model 
can also be implemented in ATP-EMTP environment and 
verified by a numerical analysis. Thereafter, a detailed analysis 
is performed on a foil-type transformer [4]. 
 
 The paper is organized as follows. Section II explains the 
computational procedure. Section III deals with the 
verification of the model by an EMTP model; white box model 
is verified by EMTP simulations. In Section IV, a detailed 
analysis of a transformer winding for which the parameters are 
known is performed. Section V and Section VI deal with the 
discussion of the results and conclusion respectively.    

II.  COMPUTATION STRATEGY 
According to [1], the transformer is fully determined when 

the Z matrix of the transformer winding is known. The 
voltages and currents can be computed by making use of: 

T 

                     



 
UYI =              (1) 

in which, I is a vector of current injections in the coil/turns, Y 
is a square admittance matrix of the winding and U is a vector 
of voltages to ground at each coil/turn. Matrix Y is defined as: 
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where G is the matrix of conductances, C is the matrix of 
capacitances and Γ is the nodal inductance matrix, which also 
takes into account series losses. In general, it may take into 
account frequency dependent self- and mutual inductances,  
and frequency dependent losses including proximity effects as 
well. Since the accuracy of the computed voltages is highly 
dependent on the accuracy of the parameters, it is important to 
investigate how accurate the input parameters are and what  
the frequency range of model application is. Z matrix can be 
obtained by inversion of Y. In this way, the relation between 
voltages represented in vector U and currents in vector I, can 
be represented as:  

IZU =                   (3) 
 
When j-th coil is excited by current ij, the coil voltages can be 
found as: 
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It is easy to show that when a current is injected in the sending 
end of the winding, the ratio between the voltage drop of an 
arbitrary coil point j and the terminal voltage with respect to 
the terminal voltage can be represented as: 
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Equation (5) is known as an amplification factor. When the 
source voltage u1 is also known, the voltage at each coil uj can 
be determined by: 
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The time domain voltage distribution can be calculated by 
making use of inverse Modified Fourier Transform, or other 
techniques like inverse FFT, inverse Laplace or convolution. 
In this work, the time domain solution is provided by: 
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If we divide the real and imaginary part of the integral 
function, and if we apply the property of evenness of the real 
part and oddness of the imaginary part with respect to ω, the 
following expression can be used [7]: 
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 In (8), the interval[ ]0, ,Ω  the smoothing constant b and the 

step frequency length dω must be chosen properly in order to 
arrive at an accurate time-domain response. The modified 
transformation requires the input function uj(ω) to be filtered 
by an exp( )−bt  window function. To compute the voltages in 
separate coils the same procedure can be applied.  

III.  MODEL VERIFICATION 
The described procedure in the previous section is applied on 
a test transformer for which the parameters of the coils and 
explanation of how the matrices are built are provided in the 
Appendix I. These parameters are taken from a test coil, the 
measurements of which are also shown in [1]. These data are 
also used for the EMTP model as shown in Figure 1. The L 
matrix with mutual inductances among all inductive elements 
is not seen in this figure.  
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Figure 1. An illustration of the test circuit.  
 
Figure 2 shows a comparison of the harmonic terminal 
impedance of the numerical model and EMTP model. 
Amplitude and phase characteristics are compared and it can 
be seen that both are in good agreement. The advantage of this 
implementation is that it offers possibility to observe the 
interaction of the transformer with a specific network. 
 
(Anti)resonances occur whenever for some particular 
frequency, harmonic impedance phase angle is zero. Figure 3 
represents the computed amplification factors for the observed 
frequency spectrum. It can be seen that maximum 
amplification factors for all coils occur at resonance frequency 
of 7.4 kHz. At this frequency, the phase changes its sign from 
negative to positive (from predominantly capacitive to 
predominantly inductive). It can also be seen that the 
amplification factors for different coils are different. In this 
case the highest amplification occurs in coil 6. 



 
Figure 2. Comparison between numerical computation and simulation of 
harmonic terminal amplitude impedance (upper graph) and phase impedance 
(lower graph).  
 

 
Figure 3. Computed amplification factors for all coils for the observed 
frequency spectrum (upper graph); increased time scale of the amplification 
factors around resonance frequency of 7.4 kHz.  
 

 
Figure 4. Applied excitation and voltage response in the 3rd coil.  

 

 
Figure 5. Voltage oscillation in coils 4, 5 and 7 upon an excitation as shown 
in Figure 4. 
 
The verification of the model is demonstrated by applying a 
sinusoidal pulse with a duration of two periods and a 
frequency equal to 7.4 kHz, which is the most severe 
resonance frequency for this transformer. Figure 4 shows the 
applied excitation and the voltage response in coil 3. It is 
evident to see the occurrence of resonance in these figures 
since the voltage increases in magnitude and thereafter 
gradually decreases. It is also evident that the voltage in 
different coils rises above the excitation voltage amplitude.  

IV.  DETAILED ANALYSIS OF A TRANSFORMER WINDING 
In this section, a detailed analysis of a transformer winding is 
presented. The parameters of an actual foil-type transformer 
winding including can be found in [4]. Further analysis on the 
parameters is beyond the scope of this work. The transformer 
winding consists of 13 coils, and the model is applied only on 
coils and not on turn and interturn voltages, even though this is 
also possible, if detailed representation of the L-,C- and R-
matrices of the coils are known. This can be done in two steps 
as it is explained in [6].  
Figure 6 shows the harmonic terminal impedance of the 
studied transformer. This is a simulated characteristic and it is 
in a good agreement with the measurements provided in [4,8]. 
It can be seen that this transformer has several resonance 
frequencies. The denoted resonance frequency (36.8 kHz) is 
the one that results in the highest amplification factor. Figure 7 
shows the amplification factors in transformer coils during 



resonance that results from this oscillation frequency. Coil 7 is 
the one exposed to highest overvoltage that is about 9 pu. 
Amplification factors gradually decrease from coil 7 toward 
the remote ends of the winding. 
 

 
Figure 6. Harmonic terminal impedance of the studied transformer winding 
with the most severe resonance frequency; amplitude characteristic (upper 
trace) and phase characteristic (lower trace). 
 

 
Figure 7. Computed amplification factors for the denoted resonance 
frequency. 
 

 
Figure 8. Computed amplification factor for coil 7. 
 
The amplification factor of coil 7 is represented in Figure 8. It 
can be seen that at 36.8kHz the voltage may rise up to 9.2 pu. 
In order to observe the variation of the voltages in different 
coils, the transformer is excited by a sinusoidal pulse with 
duration of different periods and frequency equal to the 
observed resonance frequency. Figures 9 through 11 shows the 
variation of voltages in some coils. Figure 9 corresponds to a 
voltage excitation with two periods. It can be seen that the 
maximum voltage in this case is about 2.3 times higher than 
the source voltage applied to the transformer.  

 
Figure 9. Computed resonance voltages for an excitation with 2 periods. 
  

 
Figure 10. Computed resonance voltages for an excitation with 6 periods. 

 
Figure 11. Computed resonance voltages for an excitation with 12 periods. 
 
Analogously, Figures 10 and 11 show the voltage variation 
when the transformer is excited with the same pulse in 
amplitude and frequency, but with different duration. In Figure 
10, the excitation pulse contains 6 periods whilst in Figure 11, 



it is with duration of 12 periods. The difference in the results 
of the studied cases can be observed in the amplitude of the 
maximum overvoltages. With other words, when the pulse 
duration increases, the amplitude of the resonance voltages 
increase accordingly. Appendix II summarizes voltages in coil 
7 for a source voltage with 12 periods and 24 periods 
respectively. 
 
Maximum resonance overvoltages for different pulse durations 
are summarized in Figure 12. For the studied transformer, the 
voltage distribution was also computed during 50 Hz 
excitation. Voltages are linearly distributed starting at 1 pu in 
the first coil with a gradual decrease toward the receiving end 
of the winding. On the other hand, it can be seen that the 
maximum overvoltages gradually increase by the increase of 
the pulse duration. The non-linear voltage distribution in this 
case is obvious.  
 

 
Figure 12. Voltage distribution during resonance for different duration of the 
excitation compared with to voltage distribution during normal operation (50 
Hz). 
 
This means that during resonance, it is important how long the 
transformer is exposed to resonance. For excitations with short 
duration, the released amount of energy is lower than that 
during excitation with longer duration. Finally, when the 
duration of the impulse is long enough, the maximum 
overvoltage will be equal to the computed amplification factor.  
From Figure 12, it can be seen that voltage in coil 7 becomes 
equal to the maximum amplification factor 9.2 when the 
excitation impulse has 24 periods, which also can be seen from 
Figure 8.  

V.  DISCUSSION 
The computed results show that the resonance may lead to 
severe overvoltages, which are several and even tens of times 
higher in amplitude than the applied voltages at the 
transformer terminal. In [4], a detailed analysis was performed 
in which transformer reaction to overvoltages was tested upon 
different network conditions complying different loads and 
cable lengths during transformer energization and de-
energization. The severity factor [4],[9],[10] was estimated 
based on an envelope designed by the switching impulse level 
and lightning impulse level. From the measurement and 
simulation, it was found that the overvoltages were not that 
high and the transformer may not face difficulties. The 
analyzed overvoltages resulted due to multiple restrikes and 
prestrikes when switching the transformer with a vacuum 
circuit breaker. It is obvious that an oscillation with the most 
severe resonance frequency did not take place. The type of the 

model that can be used for this purpose depends on the 
frequency range. In case, when frequency losses are well 
estimated and can be represented with constant parameters, an 
EMT-based model can also be used successfully. For a broad 
frequency range, above 100 kHz, proximity losses heavily vary 
with the frequency so that computation difficulties may be 
faced. In such case, it is strongly recommended to make use of 
an analysis in which frequency dependent parameters due to 
variable losses, skin effect and dielectric permittivity are 
computed within broad frequency range.   
In general, networks which are vulnerable to harmonics may 
be permanently exposed to high overvoltages. Besides, it is 
useful to investigate the interaction of the transformer with the 
network and see if there are circumstances so that the 
transformer may enter in resonance with the surrounding 
network. Possible cases may be lightning in the surrounding of 
a high power transformer, transformer energization (prestrike 
effect) or transformer de-energization. The latter, may result in 
sever multiple restrikes, which may lead to oscillations with 
different frequencies. In the past work [5], it was shown that 
the oscillations of multiple restrikes are not only dependent on 
the circuit breaker parameters but also on the connection 
between the transformer and the circuit breaker. In case of a 
cable connection, cable resonance frequencies may also 
influence the total resonance frequency of the system cable – 
transformer. This is subject of future investigation.  
 
Besides, high power, high voltage transformers may have more 
resonance frequencies up to 100 kHz than medium voltage 
transformers, hence the likelihood a resonance to occur is 
higher. Another point of interest for the future will be the 
overvoltage level during excitation with a resonant frequency 
oscillation that is chopped. This may result in higher 
overvoltage and comprehensive analysis will be needed to see 
if the overvoltage amplitude may exceed the insulation level.  

VI.  CONCLUSIONS 
The paper presents a comprehensive and detailed analysis of 
resonance effects in transformers. The analysis is performed 
on only one transformer phase, however, the approach is 
generally applicable for any transformer as long as the 
inductance and capacitance matrix as well as losses are 
accurately determined. It is valid for multi-winding multi-
phase transformers with any type of winding. Z matrix of 
transformer windings contains all the information about the 
voltage and current distributions in the winding.  
 
The transformer saturation in this case is not taken into 
account. However, since the impedances are computed in 
frequency domain, the influence of the core can also be taken 
into account. Anyhow, experience shows that the core has 
limited influence up to several tens of kilohertz. This has been 
validated by measurements on open and short circuited 
secondary winding of the transformer [5]. The applied 
parameters, which are explained in more detail in [4] are 
computed in a way that the flux does not penetrate the core. 
Experience and previous work reveals that above several tens 
of kilohertz this is justified. In this work, it is shown that the 



voltage distribution for existing resonance frequencies can be 
determined by computing the amplification factor based on the 
provided characteristics.  Here, only one resonance frequency 
was analyzed. Voltage distributions for different resonance 
frequencies can be calculated in the same way. This analysis 
has also shown that another crucial factor, which influences 
overvoltage amplitude is the excitation duration. When a 
transformer is exposed to resonance oscillations for a longer 
time, the value of the maximum amplification factor of some 
coil can be reached.  
 
Finally, lossy frequency dependent inductances obtained by 
Wilcox’s approach [11] can be used to represent transformer 
frequency-dependent losses and inductances. On one hand, the 
representation of these matrices in EMTP-based environment 
is possible by making use of constant parameters for the 
resistances and inductances. On the other hand, this is not fully 
accurate since frequency-dependency is not taken into account. 
One solution regarding this issue is to define the validation of 
these parameters for particular frequency range and make use 
of such model for particular bandwidth.  

VII.  APPENDIX I 
Data for the transformer test coil: L11=28.988 mH; M12=13.537 
mH; M13=6.231 mH; M14=3.379 mH; M15=1.987 mH; 
M16=1.242 mH; M17=0.817 mH; M18=0.56 mH; M19=0.398 
mH; M110=0.292 mH; Cg=850 pF; Cs=3.4 pF; Rg=2.1e11 Ω; Rs 
=1.65e5 Ω; r=22.6 Ω; where Cs is a series capacitance 
between coils, Cg is a capacitance between node to ground. 
1/Rs and 1/Rg are series and shunt admittances respectively 
used to build the admittance matrix G, whilst r is the coil 
resistance of the coils. C-matrix is built in the following way: 
Diagonal elements: sum of all capacitors connected to a 
particular node i; Off-diagonal elements: a capacitance with 
negative sign connected between node i and node j. In case 
when there is no capacitance between node i and node j, the 
element is zero. The admittance matrix G is formed in the 
same way as the C-matrix. Coil resistances are included in the 
inductance matrix L only in the diagonal elements.  
 

VIII.  APPENDIX II 
Comparison of resonance overvoltages with an excitation of 
12 and 24 periods respectively.  
 
 
 
 
 
 
 

 

 
Figure I. Resonance voltage in the 7th coil for a source with 12 periods (upper) 
graph and 24 periods (lower graph). 
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