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Abstract--Owing to high demand for electromagnetic transient 

(EMT) simulations of power systems, faster simulations are 
desired for EMT analysis programs since the circuits simulated 
are becoming increasingly large and complex. In this paper, we 
describe solution process parallelization for an EMT analysis 
program executed on a general-purpose PC with a multi-core 
processor using OpenMP. If the number of subsystems is greater 
than the number of available cores, an appropriate task-
scheduling algorithm for efficient load balancing is required. 
Accordingly, we discuss the effect of task-scheduling algorithms 
on the computation time through a verification using static and 
dynamic scheduling algorithms. Finally, it is shown that parallel 
processing of the solution process with six threads using OpenMP 
in this study achieves over three times faster computation than 
the conventional sequential computation. 
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I.  INTRODUCTION 

LECTROMAGNETIC transient (EMT) simulations have 
been used for studies of conventional phenomena such as 

overvoltages, inrush currents, ferroresonance, and abnormal 
oscillations. Nowadays, studies of power systems including 
power-electronics converters such as dc transmission, back-to-
back system interconnection (frequency conversion between 
50 and 60 Hz), and power conditioning systems for renewable 
energies are also carried out using EMT simulations since 
these studies require waveform-level calculations to take into 
account switchings in power-electronics converters. Owing to 
the high demand for EMT simulations of power systems, 
faster simulations are desired for EMT analysis programs 
since the circuits simulated are becoming increasingly large. 

The calculation process in EMTP-based programs consists 
of the following three main processes: a formulation process 
to formulate the circuit equations for the circuit to be 
simulated; a solution process to solve the circuit equations 
using LU decomposition and forward-backward substitution; 
and an updating process to update the internal states of the 
circuit components. The total computation time of the 
simulation includes the computation time not only of these 
three processes but also that required to solve the control 
system and write the simulation results to a file. Although the 
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computation time of each process depends on the type of 
circuit to be simulated, a large proportion of the computation 
time is spent in the solution process. Thus, a fast algorithm for 
the solution process is important for faster simulations. 

The following two approaches have been used to accelerate 
the solution process of EMT analysis programs: sparse matrix 
methods [1] for the efficient computation of a large sparse 
matrix given by the circuit equations and parallel processing 
of the solution process using many computers or multi-core 
processors. In EMT simulations of a power system, the 
propagation delay of transmission lines in the power system 
allows a large power system to be decoupled into several 
independent subsystems without the use of complicated 
techniques [2], [3]. Therefore, it is technically straightforward 
to apply the latter approach to an EMT analysis program, and 
much work has been carried out using various hardware 
architectures [4]-[10]. In addition, several studies using multi-
core processors installed in general-purpose PCs have been 
reported owing to their high penetration in recent years [11], 
[12]. 

In this paper, we describe solution process parallelization 
for an EMT analysis program executed on a general-purpose 
PC with a multi-core processor using OpenMP [13], which is 
one of the shared-memory parallel programming interfaces. 
To be more precise, the circuit to be simulated is partitioned 
into subcircuits by distributed parameter transmission lines, 
and the solution processes of the circuit equations formulated 
for each subcircuit are solved in parallel. If the number of 
subsystems is greater than the number of available cores 
executing the solution processes, an appropriate task-
scheduling algorithm for efficient load balancing is required. 
Accordingly, we discuss the effect of task-scheduling 
algorithms on the computation time through a verification 
using static and dynamic scheduling algorithms. The 
parallelization is implemented in the EMT analysis program 
XTAP (eXpandable Transient Analysis Program) [14], [15], 
and the performance of the parallelization is validated using 
IEEJ’s West-10 benchmark power system model [16], [17], 
called the West-10 Benchmark System. As a result of the 
validation, it has been demonstrated that the computation time 
using a static scheduling algorithm is less than that using a 
dynamic scheduling algorithm. Moreover, it has been shown 
that parallel processing of the solution process with six threads 
using OpenMP in this study achieves over three times faster 
computation than the conventional sequential computation. 

II.  FLOWCHART OF CALCULATION PROCESS IN EMT ANALYSIS 

PROGRAMS 

Fig. 1 shows a flowchart of the EMT analysis program with 

E 



solution process parallelization used in this study. As is clear 
from Fig. 1, the solution process is parallelized but the other 
processes are executed sequentially. Actually, parallel 
execution is allowed for the updating process because the 
internal states of the circuit components can be updated 
independently. However, the main purpose of this study is to 
discuss the effect of task-scheduling algorithms on the 
computation time when the solution process is parallelized. 
For this reason, this updating process (and other processes 
except for the solution process) is executed sequentially. 
When the transmission lines in the circuit to be simulated are 
represented by the distributed parameter line model, the 
propagation delay of the line model can completely decouple 
the circuit into several independent subcircuits as long as the 
delay is longer than the simulation time step [2]. In this case, 

the solution processes of each subcircuit can be executed in 
parallel. There is no communication overhead except for that 
of the synchronization processes at the beginning and end of 
the parallel region because of the complete independence of 
the solution processes of each subcircuit. 

III.  TASK-SCHEDULING ALGORITHMS 

In this paper, the parallel EMT analysis program shown in 
Fig. 1 is implemented using OpenMP, which is a standard 
application programming interface (API) for multi-platform 
shared-memory parallel programming in C/C++ and Fortran 
[13]. OpenMP uses the fork-join model of parallel execution. 
The program begins as a single process called the master 
thread. The master thread executes computation tasks 
sequentially until a parallel region is encountered. The master 
thread then creates multiple slave threads, and all the threads 
execute the computation tasks allocated to them in parallel. 
After all threads have completed the tasks in the parallel 
region, they synchronize and terminate, leaving only the 
master thread, and it continues to execute the subsequent tasks 
sequentially. Creating and terminating the threads require a 
certain amount of CPU usage, which becomes an overhead 
that leads to slower execution of the program. 

We assume that the number of available threads in a 
simulation environment is m and that n subcircuits are created 
as a result of decoupling the circuit to be simulated by all the 
transmission lines in the circuit. If n is smaller than m, the 
computation tasks of the solution process for each subcircuit 
can be allocated to the threads one by one. However, if n is 
greater than m, an appropriate task-scheduling algorithm is 
required for efficient load balancing. 

Task-scheduling algorithms can be divided into two 
classes: static scheduling algorithms and dynamic scheduling 
algorithms. In static scheduling algorithms, all the 
computation tasks are allocated to threads before the processes 
of the parallel region begin. In dynamic scheduling algorithms, 
the computation tasks are allocated to threads dynamically as 
the threads request them in the parallel region. Generally, a 
static scheduling algorithm is preferable in cases where the 
load of computation tasks is almost the same. By contrast, if 
the load of computation tasks is variable and/or cannot be 
estimated, a dynamic scheduling algorithm is the better choice 
[18]. It appears that the load of the computation tasks required 
by the solution process of a subcircuit can be roughly 
predicted from the order or the number of nonzero elements of 
the coefficient matrix given by the circuit equations. However, 
it is difficult to estimate it accurately because a sparse matrix 
method requires not only essential operations with LU 
decomposition and forward/backward substitution but also 
computation to find the nonzero elements. Thus, static 
scheduling algorithms using the approximate load of 
computation tasks and dynamic scheduling algorithms are 
compared. 

A.  Static scheduling algorithms 

For static scheduling algorithms, it is important to estimate 
the load of a computation task accurately and allocate tasks to Fig. 1.  The flowchart of the calculation process in the EMT analysis 

program with solution process parallelization in this study. 
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threads optimally. If the coefficient matrix given by the circuit 
equations is dense, the number of operations in the solution 
process is O (N3), where N is the order of the matrix. In the 
context of power system analysis, the matrix is sparse. Thus, a 
sparse matrix method is usually used and the number of 
operations in the solution process is much less than O (N3). 
Fig. 2 shows the relationship between the number of 
operations (addition and multiplication) and N, and the 
number of nonzero elements NZ using the matrices for 44 test 
cases of various EMT simulations. The figure indicates that 
the number of operations is almost proportional to N1.25 and 
NZ1.5. Here, the numbers calculated by these two formulas are 
assumed as the load of computation tasks in the solution 
process of the circuit.  

A task-scheduling problem is known to be NP-complete, 
and a method that can find a suboptimal solution quickly is 
often utilized [19]. To obtain an appropriate task-scheduling 
solution, the following heuristic algorithm, called the best-
fitting decreasing (BFD) method [19], is used in this study.  

i) Sort the computation tasks in decreasing order using 
the load of each computation task. 

ii) Allocate one task to every thread. 

iii) Allocate a task to the thread with smallest load of 
computation task. 

iv) Repeat iii) until all the tasks are allocated. 

B.  Dynamic scheduling algorithms 

A dynamic scheduling algorithm does not necessarily 
estimate the load of a computation task. In the implementation 
of a dynamic scheduling algorithm, exclusive access control 
must be installed to prevent threads from accessing a shared 
resource for dynamic allocation to threads. List 1 shows the 
dynamic scheduling algorithm implemented using a critical 
construct [13] that realizes exclusive access control in this 
study. In list 1, lines 4-16 are executed in parallel except for 
lines 10-13, which are executed by only one thread at a time 
by the critical construct and the tasks are allocated to the 
threads in these lines.  

In OpenMP, it is also possible to realize dynamic 
scheduling easily by attaching a “dynamic” clause to the 
work-sharing construct to control how iterations are assigned 
to threads. List 2 shows examples of codes using the dynamic 
clause. In this study, the above two dynamic scheduling 
implementations are validated. 

IV.  VALIDATION 

In this section, the effect of parallelization of the solution 
process is verified using the task-scheduling algorithms 
discussed in the previous section. The parallelization is 
implemented in the EMT analysis program XTAP. The 
computer used for verification has one Intel Core i7 3930K 
(3.2 Hz, 6 core) CPU and 32 GB memory. The operating 
system of this computer is Windows 7 Ultimate Edition. Intel 
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Fig. 2.  The relationship between (a) the number of operations and N, and (b) 
the number of nonzero element NZ using the matrices for 44 test cases.

(a)

(b)

= N 1.25 

= NZ 1.5 

 1 ItrNum = 0; 
 2 #pragma omp parallel shared(ItrNum) 
 3 { 
 4   bool eflag = false; 
 5   int i; 
 6   while ( !eflag ) 
 7   { 
 8     #pragma omp critical 
 9     { 
10       i = ItrNum; 
11       ItrNum++; 
12       if (ItrNum > TaskNum) 
13         eflag = true; 
14     } 
15     if (!eflag) 
16       Solve(i);  // Solve #i subcircuit.
17   } 
18 } 

 1 #pragma omp parallel for schedule(dynamic, 1)
 2 for (int i = 0; i < TaskNum; i++) 
 3   Solve(i);  // Solve #i subcircuit. 

List 1  The dynamic scheduling algorithm that implemented using the 
critical construct.

List 2  The dynamic scheduling algorithm that implemented using the 
dynamic clause of the work-sharing construct. 



Hyper-Threading technology [20] and Intel Turbo Boost 
technology [21], which are implemented in Intel CPU and 
enhance CPU performance and efficiency, are disabled in this 
verification. 

The parallel EMT analysis program described above is 
tested on the EMT model of IEEJ’s West-10 Benchmark 
System. This system, which is shown in Fig. 3, approximates 
the 60 Hz power system in Japan with ten generators. 
Reference [16] should be consulted for details. The 
development of the EMT model of the system was reported in 
[17]. The model represents all three phases. In this model, the 
transmission lines are represented by the constant-parameter 
line model [2], the generators are represented by the d- and q-
axes equivalent circuits interfaced with terminals in the abc 
frame using dependent sources, the transformer models are 
represented by the basic transformer model (delta-star 
connection), and the load model consists of three-phase star-
connected series RL components. 

XTAP uses the sparse tableau approach [22] for the 
formulation process and Fig. 4 shows the coefficient matrix 
given by the circuit equations obtained by the EMT model of 
the West-10 Benchmark System using the sparse tableau 
approach. As a result of decoupling the circuit into several 
independent subcircuits using all the transmission lines, the 
number of subcircuits is 17. Table I shows the order N and the 
number of nonzero elements NZ in the coefficient matrix of 
each subcircuit. 

Varying the number of available threads from 1 to 6, the 
EMT model is calculated by the parallel EMT analysis 
program with the four types of task-scheduling algorithm 
described above. Fig. 5 shows the ratio between the 
computation times required for the conventional sequential 
program and the parallel program in each scheduling 
algorithm. This graph shows the following:  

i) The two static scheduling algorithms are faster than the 
two dynamic algorithms. It is considered that the 
overhead required for task allocation is negligible 
compared with the computation time required for the 
solution process, and the overhead of the dynamic 
allocation is larger than that of the static allocation. 

There are no significant differences between the two 
methods in the static scheduling algorithms, and 
between the two methods in the dynamic scheduling 
algorithms. 

ii) The parallel program with only one thread is 1.25 times 
faster than the conventional sequential program. This is 
because the load of computation tasks of the solution 
process is not proportional to the order N of the 
coefficient matrix, and it is considered that LU 
decomposition and backward/forward substitution on 
one large matrix require more computational load than 
computing them separately for the partial matrices. 

iii) In this study, the parallel EMT analysis program with 
six threads is up to 3.5 times faster than the 
conventional sequential program. 

Fig. 4.  The coefficient matrix given by the circuit equations obtained by the 
West-10 Benchmark System using the sparse tableau approach. 

Fig. 3.  One-line diagram of the West-10 Benchmark System (IEEJ’s West-10 benchmark power system model).
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V.  CONCLUSIONS 

Owing to the fast simulation of an EMT analysis program 
executed on a general-purpose PC with a multi-core processor, 
the circuit to be simulated was partitioned into subcircuits by 
distributed parameter transmission lines, and the solution 
processes of the circuit equations given by the subcircuits 
were solved in parallel using OpenMP, which is one of the 
shared-memory parallel programing interfaces. We discussed 
the effect of task-scheduling algorithms on the computation 
time through a verification using static and dynamic 
scheduling algorithms. The parallelization was implemented in 
the EMT analysis program XTAP, and the performance of the 
parallelization was validated using the EMT model of the 
West-10 Benchmark System. As a result of the validation, it 
was demonstrated that the computation time using the static 
scheduling algorithm was less than that using the dynamic 
scheduling algorithm and that the parallel EMT analysis 
program with six threads was up to 3.5 times faster than the 
conventional sequential program. 

In this paper, we have only validated the performance of 
the parallelization using the EMT model of the West-10 
Benchmark System, which is simple and not a realistic power 
system. Thus, we will validate the performance using practical 
power system in the future. 
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