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Abstract—This work proposes time-domain modeling for
non-uniform conductors such as those found in very short lines,
i.e, when the length of the actual circuit is in the same order
of magnitude as the height of the conductors, or when the
conductors are arbitrarily oriented. They are represented via
the so-called Hybrid Electromagnetic Model (HEM) allowing
an implementation in time-domain simulation programs such as
EMTP. The procedure is based on obtaining an equivalent nodal
admittance matrix for the system using HEM and then apply
a frequency domain fitting assuming a rational approximation.
Using a passivity enforcement routine, this model can be
interfaced with any EMT type of programs. Two test cases are
considered to evaluate the time responses. One uses a comparison
with already published experimental results, and the other uses a
comparison with simulations carried out in the frequency domain
using the Numerical Laplace Transform (NLT) .

Keywords—Grounding System, Lightning Protection, Rational
Approximation.

I. INTRODUCTION

THERE is an increasing need to evaluate higher
frequency phenomena in electromagnetic transient

analysis. Typically, this is the case of lightning related
analysis, electromagnetic compatibility and more recently
transients involving power electronics based systems. In some
of these scenarios, the assumptions related to a quasi-TEM
propagation do no hold, and more complex modeling should be
considered [1]. A full-wave model is then needed and one has
to deal with an integral equation to be solved. If a conductor
has a constant height and is close to a lossy interface it is
possible to solve the actual integral equation [2]. Unfortunately
this approach is not suitable to multi-phase configurations or
when the length of the actual circuit is in the same order of
magnitude as the height of the conductors. Alternatively, one
may use approximate approaches to solve the integral equation
as the Method of Moments (MoM) [3] or use predefined
values for the unknown propagation constant in the integral
equation [4].
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The inclusion of MoM-based models on EMTP-type
simulations represents a challenge and the frequency domain
seems to be the preferable choice, see for instance [5].
Previous attempts to include wideband grounding systems
have focused on either using uniform [6] or nonuniform line
modeling [7]. To the best of the authors knowledge, little has
been done regarding the actual representation of the conductor
sags.

In this work, a distinct approach is sought. First, we consider
the so-called Hybrid Electromagnetic Model (HEM) [8] for
obtaining the wideband impedances for thefrequency range
of interest. After obtaining the equivalent nodal admittance
matrix, a rational approximation is carried out using the
so-called Vector Fitting algorithm [9]–[11] which can then be
directly integrated in any EMTP-type of program via recursive
convolution [12] or using an equivalent RLC circuit [13].
However, the latter is prone to inaccuracies due to the limited
accuracy of RLC branches [14].

The paper is organized as follows. Section II describes
the formulation of the impedance matrices based on MoM
and their assembly in an equivalent nodal admittance matrix.
Section III presents the test cases, frequency and time domains
analyzes are carried out for the assessment of the proposed
approach. The main conclusions of this work are shown in
Section IV.

II. MATHEMATICAL MODELING

A. Impedance Matrices Formulation

Consider, initially, an arbitrary oriented lossless electrode
with radius a and length Li and another electrode with
same radius but with length Lk immerse in a medium with
conductivity σ, permeability µ and permittivity ε, as depicted
in Fig. 1. A filamentary current I is injected at the center of
conductor i. The electrical field at an arbitrary point at the
surface of electrode k is then given by

E =
jωµ I

4π

∫
Li

exp (−γr)
r

cosφdξ (1)

where r is the distance between an arbitrary infinitesimal
element at the center of electrode i to an arbitrary point at
the surface of electrode k, φ is the angle between vectors
associated with Li and Lk, γ =

√
jωµ (σ + jωε).

Integrating (1) along the electrode surface leads to the
induced voltage VL due to the filamentary current I. The
longitudinal impedance is then given by,

ZLik
=

VL

I
=
jωµ

4π

∫
Li

∫
Lk

exp (−γr)
r

cosφdξdζ . (2)
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Fig. 1. Finite length lossless electrodes in a uniform medium.

In the case of the self-impedance, the distance is from the
center of the electrode to an arbitrary point at its surface as
depicted in Fig. 2, i.e.,

ZLii =
VL

I
=
jωµ

4π

∫
Li

∫
Li

exp (−γr)
r

dξdζ . (3)

The effect of the conductor losses can be considered by
adding to ZL the internal impedance Zin calculated using the
well-known expression

Zin =
jωµ

2πγc a

I0 (γca)

I1 (γca)
(4)

where γc ≈
√
jωµcσc is the propagation constant of the

conductor as in most conductors σc � ωεc for all frequencies
of interest, µc is the permeability of the electrode, σc is its
conductivity, and εc is the permittivity of the electrode.
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Fig. 2. Procedure to obtain the self-impedance for electrode i in a uniform
medium.

The elements of the shunt (transversal) impedance matrix
can be obtained from the electric scalar potential. First, we
need to consider the density of the shunt current IT injected
into the external medium from conductor i, J = IT

Li
. This

current is also referred as leakage current. The electric scalar
potential then can be written as

ϕ =
1

Li

IT
4π (σ + jωε)

∫
Li

∫
Lk

exp (−γr)
r

dξdζ (5)

integrating (5) and dividing it by Lk gives the average electric
scalar potential in conductor k, VT due to a transverse current

from electrode i. Then the transversal impedance between
electrodes i and k is given by

ZTik
=

VT

IT
=

1

LiLk

1

4π (σ + jωε)

∫
Li

∫
Lk

exp (−γr)
r

dξdζ .

(6)

The self-elements of the shunt impedance matrix can be
obtained directly as

ZTii
=

1

LiLi

1

4π (σ + jωε)

∫
Li

∫
Li

exp (−γr)
r

dξdζ . (7)

where r is a distance from a point at the electrode center to
its surface.

B. Effect of air-soil interface

A rigorous solution to represent the air-soil interface can be
obtained if the actual spherical wave is considered through
a series expansion of plane waves and then obtaining a
coherent set of reflection and refraction coefficients for each
one of these plane waves, see for instance [15, sec. 7.6].
Unfortunately, this approach is very time-consuming and
simpler approaches can be considered. To do so, first one has
to consider the medium where the voltages and currents are
to calculated.

For instance, if we consider a grounding system, the
electrodes are in a lossy medium and the approach is rather
distinct from the one we should use if the electrodes are in air
near a lossy interface. In the case of buried bare electrodes,
if the distance from the electrodes is sufficiently larger than
the electrode radius we can use simple charge/current images.
Recently, it was shown in [16,17] that for several practical
applications of grounding electrodes, charge images might
suffice which implies that there will be an image for ZT , with
ZL remaining the same. The elements for the additional matrix
are given by

ZTjk
=

Γ

LiLk

1

4π (σ + jωε)

∫
Li

∫
Lk

exp (−γr)
r

dξdζ . (8)

where Lk is an image of electrode Lk and

Γ =
σ1 + jωεrε0 − jωε0
σ1 + jωεrε0 + jωε0

. (9)

The final transverse impedance is then given

ZTnew
= ZT + ZT (10)

where the elements of ZT are given by (6) and ZT are given
by (8).

In the case of electrodes above a lossy medium. The
scenario is slightly different. For ZT , one may resort to a
series of complex images, see for details [18]. Fortunately,
in a first approximation, it is possible to consider a single
complex image at a distance di given by

di =
2√

γ2s − γ20
(11)

where γs is the ground propagation constant and γ0 = jω/c,
being c the speed of light. If we consider γs � γ0 in the



procedure to derive di, it becomes di = 1/γs which is the
same result as the one used in the complex ground plane [19].
For ZL, it is sufficient to consider the transmission coefficient
between air and the lossy medium.

C. Assembly of Equivalent Nodal Admittance Matrix

After obtaining ZT and ZL, we need to assemble them
in order to derive an equivalent nodal admittance matrix. So
consider that electrode i is represented by nodes ”1” and ”2”,
while ”3” and ”4” are the nodes associated with electrode k.
First, it is assumed that with respect to the transverse (shunt)
current IT the voltage at the electrode can be given by the
average of its transverse voltage, thus it is possible to write

ZT · IT = mA ·Vn (12)

where mA is a matrix defined as
• mA(i, k) = 0.5, if node i is connected to segment k,
• mA(i, k) = 0, otherwise.
Conversely, for the longitudinal (series) current IT we can

relate it to the voltage drop along the electrode which in turn
can be related to the node voltages with respect to a point far
from the electrode as

ZL · IL = mB ·Vn (13)

where mB have elements with the following structure
• mB(i, k) = 1 if node j is connected to the beginning of

segment k;
• mB(i, k) = −1 if node j is connected to the ending of

segment k;
• mB(i, k) = 0 if node j is not connected to segment k.
Assuming a vector of external currents injected in the

electrodes Ie, and applying Kirchoff’s law to the electrodes
leads to

Ie = mT
B · IL + mT

A · IT . (14)

Then using (12) and (13) it is possible to write

Ie =
(
mT

A · Z−1T ·mA + mT
B · Z−1L ·mB

)
·Vn = Yeq ·Vn

(15)

where Yeq is the equivalent nodal admittance matrix for a
system of electrodes.

D. Rational Approximation

The rational approximation of Yeq is carried out using the
so-called Vector Fitting (VF) algorithm, thus it is approximated
by

Yeq(s) ≈
N∑

n=1

Rn

s+ pn
+ D + sE (16)

where D and E are real matrices, the poles pn are either
real or come in complex conjugates and the same can be
said about the elements in Rn. To ensure that the rational
approximation is a feasible realization, one has to ensure that
it is passive. This can be achieved by a post-processing set of
routines to enforce passivity. In the literature there have been
several approaches to achieve that. Here, the fast passivity

enforcement by perturbation of the residue matrix eigenvalues
was considered [20].

To improve the passivity enforcement it was found that it
is better to pre-calculated D and E as

D + s∞E = < (Yeq(∞)) + s∞= (Yeq(∞)) (17)

where, from a practical point of view, it was considered a
very high frequency, i.e., s∞ = j2π 1010 for the evaluation of
Yeq(∞). Then the rational approximation is calculated as a
strictly proper function. It is important to note that for aerial
conductors =(Yeq(∞)) ≈ null and the procedure becomes
rather similar to what was used in [21] to represent nonuniform
overhead lines.

III. TEST CASES

In the test cases presented in this section, we calculate Yeq

in a predefined frequency range using HEM and compared
this results to the one obtained via rational approximation.
For the time responses, the Numerical Laplace Transform
(NLT) [22]–[26] was applied with HEM and the recursive
convolution [12,13,27] with the proposed algorithm.

A. Short horizontal conductor over copper plate

This test is based on the configuration used in [28]. The
layout of the used experimental setup is depicted in Fig. 3.
Here, it is assumed that the copper plate allows to consider an
ideal image plane. The lead wire has an approximate length
of 50 cm and the horizontal wire has a 50 cm constant height.
The pulse generator (PG) was represented as a piecewise linear
voltage source as in [28].

l=4 m

I
lead wire

10 mm radius

copper plate

50 cm

PG

Fig. 3. Finite length conductor over an copper plate.

The first step is then obtaining the equivalent nodal
admittance matrix, Yeq(s). A key issue is the conductor
segmentation. If very short segments are considered, a very
large Yeq(s) is needed. This is a challenge to accurate and
passive rational fitting. Here it was considered that the segment
length should be close to 10 times the conductor radius. This
led to a total of 30 segments, being 5 for the lead wire and 25
for the horizontal conductor, thus Yeq(s) is a 31×31 matrix.
A frequency sweep from 1 MHz to 1 GHz with 250 samples
was used for the fitting.

Given the rather small electrodes involved due to
segmentation, adjacent electrodes present very similar
admittances, e.g., Yeq(s)12 ≈ Yeq(s)12. Thus to avoid a



Fig. 4. Comparison of fitted admittances.

“blurry” picture Figure 4 depicts only some elements in
Yeq(s), calculated using HEM, th proposed model (labeled as
“fitted”) and the deviation found. Although this figure shows
only every 5th element on each row and column, the fitting
was rather accurate for the complete Yeq(s) as the RMS-error
was 6.4E-10. Only one passivity violation was found which
was easily removed by residue perturbation as implemented
in the RPDriver of the Matrix Fitting toolbox available at
https://www.sintef.no/projectweb/vectfit/. A challenge in this
procedure is a very time consuming routine due to the large
dimension of the matrices involved. Alternatively, one could
consider using the approach recently proposed in [29] as it
reports lower computation burden to assess passivity violations
and to modify the rational approximation.

As the number of segments used in each conductor involved
is a key element in the order of the equivalent nodal
admittance matrix, a metric should be developed to adequate
the segmentation to the type of phenomena being considered.
Alternatively, an adaptative segmentation scheme, a coarse
segmentation for conductors away from the region of interest
and a fine segmentation to the region of interest.

The time-domain responses to the voltage pulse were
computed. Figure 5 presents the voltage at the connection
between the horizontal and vertical conductors while the
injected current is presented in Fig. 6. It can be observed
a very good agreement for the voltage waveform, while for
the current there are some small deviations. These could be
reduced if, instead an ideal ground plane, the actual copper
plate is represented.

B. Nonuniform Overhead Circuit

A nonuniform overhead line occurs whenever one cannot
neglect the variation of the per unit length parameters along
the circuit. Typically, this can be approximated by a cascade
of uniform lines, each calculated assuming a constant height.
However, if the segment length is in order of magnitude of
the conductors height, the quasi-TEM hypothesis are not met.

Similarly to the previous case, the first step lies in
obtaining the equivalent nodal admittance matrix considering

Experimental

Proposed Model

0 10 20 30 40
0

10

20

30

40

50

60

70

Time [ns]

V
o
lt
ag
e
[V
]

Fig. 5. Comparison of simulated and measured voltages.
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Fig. 6. Comparison of simulated and measured currents.

the conductors catenary. The expression for the catenary is

y = q
(

cosh
x

`
− 1
)

(18)

where y is the actual height of the conductors, ` is the length of
the line span and q is a parameter related to the specific weight
of the conductor, (q=1.73 for the phase conductors while it is
4.26 km for the ground-wires). Here, it is considered the actual
crossing of the Amazon river as depicted in Fig. 7.

(a) actual tower
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(b) conductors arrangment

Fig. 7. Nouniform overhead transmission line.

The line voltage is 500 kV. Each phase has a four conductor
bundle with 0.457 mm spacing. The span ` between adjcent
towers in the river crossing is around 2.1 km, the sag is around
300 m. The heights of bundle centers are 313.2 m and 323.2 m.
The ground wires height are 332.7 m. Phase conductors have
a 29.591 mm diameter, and ground wires are 3/8” EHS. The
horizontal distance between phase conductors is 5 m, and



between ground wires is 17.6 m. The river was assumed with
a constant resistivity, i.e., without frequency dependency of
roughly 20 Ωm.

Fig. 8. Fitting the equivalent nodal admittance matrix for a wide river crossing
of an overhead transmission line.

The time responses to a double exponential applied voltage
to the outermost phase conductor is presented in Fig. 9. It
can be observed a very good agreement between the results
obtained with HEM and the proposed approach.
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Fig. 9. Time responses obtained using rational approximation and using HEM.

IV. CONCLUSIONS

This work proposes a procedure based on rational
approximation for the inclusion of elements based on
electromagnetic field formulation, thus allowing a concrete
realization of wideband modeling of aerial conductors in
arbitrary orientation.

There are three main steps in the proposed procedure: the
derivation of the equivalent nodal admittance matrix which
must be carried out independently in the frequency domain,
the derivation of the rational approximation and its passive
enforcement. There are some challenges in the realization
of a large admittance matrix that might occur in some
configurations.

For the test cases considered here, the frequency domain
functions were rather smooth in all the range of interest.
The time responses indicate that the rational approximation

attained an excellent accuracy when compared with the results
obtained using the NLT. In the comparison with experimental
results, some minor discrepancies were found, probably related
to assuming the copper plate as an ideal plane.


