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Abstract—This paper presents an approach which allows
system-wide fault location using only a sparse set of synchronized
phasor measurements. The proposed algorithm combines a fault
location method using sparse estimation and post-fault voltage
prediction. The resulting method enables practical application
of the sparse estimation formulation by using Prony analysis to
predict post-fault steady state voltages at those buses equipped
with phasor measurement units. The prediction requires only a
short transient recording which is typically available before the
operation of the protective relays. Following the prediction step,
the least angle regression based sparse estimation algorithm is
employed in order to identify the fault location. A 3φ model of the
IEEE 118 bus system is developed on the alternative transients
program, in order to simulate realistic fault transients and test
the performance and accuracy of the proposed fault location
method.

Keywords—Fault location, PMU, sparse estimation, Prony
analysis, voltage estimation.

I. INTRODUCTION

Reliability is a major concern for power systems operation.
Faults on transmission and distribution lines occur frequently.
They can occur due to a wide variety of causes and may
have significant financial impacts. Therefore fast and accurate
fault location is commonly recognized as one of the most
crucial problems in power systems operation [1]. It avoids
time consuming inspection and identification of faulted section
along long transmission lines, a particularly problematic
procedure for underground distribution systems. An accurate
and reliable fault location system can reduce financial losses
and accelerate service restoration times on shed loads.

Many methods have been proposed for fault location
in the literature. They can be broadly classified as those
based on traveling waves (e.g. [2] and [3]) or based on
effective impedance calculations (e.g. [4] and [5]). Both
methods are costly and demand dedicated infrastructure on
the transmission or distribution systems. Practical application
of other alternative methods, such as those employing artificial
intelligence techniques (e.g. [6] and [7]) are generally limited
due to their heavy computational requirements.

Phasor measurement units (PMUs) have been heavily
deployed on large power systems (noticeably China, United
States and India) on the last decades (e.g. [8] and
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[9]). PMUs conveniently provide synchronized voltage and
current phasor measurements on transmission and distribution
systems. Alongside the conventional supervisory control
and data acquisition (SCADA) measurements, they increase
redundancy, observability, reliability and general situational
awareness in real time operation.

It has already been shown that the wide-area fault location
can be formulated as a sparse optimization problem. It exploits
sparsely located synchronized voltage phasor measurements
to efficiently and accurately obtain the location of faults
anywhere in the system, regardless of fault type. This fault
location approach requires both the pre-fault and post-fault
steady state voltages at those few buses equipped with PMUs.
While the pre-fault steady state voltages can be readily
provided by PMUs, post-fault steady state voltages are not
as easily acquired. Typically, fast operating protective relays
isolate the faulted line section long before the post-fault steady
state is reached.

Control and protection systems, continuously monitor major
lines for faults. Once a fault is detected, fast acting relays send
trip signals to designated circuit breakers which isolate the
fault. This event usually occurs in a few cycles of fundamental
frequency. Once circuit breakers operate, they change the
system topology. Therefore, the "faulted" steady state voltage
will never be allowed to be reached or measured by the PMUs.

PMUs usually sample and record continuous voltage
waveforms at a high sampling rate per cycle in order to
produce synchronized voltage phasors. The voltage waveform,
captured between the time of fault occurrence and the circuit
breaker operation, can be used to identify the transfer function
model of the system using Prony analysis. This model can then
be used to estimate the post-fault steady state voltage.

The proposed algorithm combines and extends the fault
location method proposed in [10] and the voltage prediction
proposed in [11]. The paper develops a comprehensive
approach based on the above observations and tests it
using realistic fault scenarios. Simulations on the alternative
transients program (ATP), using a 3φ model of IEEE 118
Bus system, are used to generate the real-time fault transient
recordings to be used by the proposed algorithm. A brief
overview of sparse estimation will be given in the next section.

II. SPARSE ESTIMATION

Given an under determined linear system (with more
unknowns than available equations) a unique solution can
still be found if there is a priori knowledge about the
sparse structure of the solution vector. In many engineering
applications such situations arise where the solution is



Fig. 1. Bus injection equivalent for fault on transmission line k-m.

expected to have a small number of non-zeros, yet their values
are unknown. In those cases, one may be able to recover
the sparse solution by using sparse estimation methods as
described in [12]. Sparse estimation can be formulated and
solved as the following optimization problem:

min
x
||x||0 s.t. ||y −Ax||2 6 ε (1)

where ||x||0 is the L0 norm of x and ε is the noise associated
with the measurement vector y.

It is well know that L0 minimization is a non-convex,
NP-Hard problem (non-deterministic polynomial acceptable
problem), and therefore an approximation is necessary to make
it computationally efficient. L1 minimization described in [13],
is a convex relaxation of L0 norm, providing an efficient and
naturally robust solution for the sparse problem.

The least absolute shrinkage and selection operator
(LASSO) formulation (2) is a constrained version of ordinary
least squares (OLS) and presents an interesting solution for
such L1 minimization problems as demonstrated in [12] and
[14]:

x̂(λ) = arg min
x

1

2
||y −Ax||22 + λ||x||1 s.t. λ > 0 (2)

where x̂(λ) is the estimated set of states and λ is the tunning
parameter, comprised mostly of zeros, leading to solutions
with selective sparsity. The following section provides details
of the LASSO algorithm.

A. LASSO Algorithm

The least angle regression (LARS), first proposed by [15],
is an algorithm for solving LASSO formulation. The proposed
algorithm is an incremental forward stagewise movement with
step size tending to zero. One of the most attractive properties
of LARS is its computational efficiency, being able to find the
sequence of all LASSO solutions, corresponding to varying
the regularization parameter λ, at the cost of a single OLS fit.

As demonstrated in [12], the LARS based sparse estimation
algorithm can be implemented as:

x̂(λ) = arg min
x
f(x, λ)

x̂(λ) = arg min
x

1

2
||y −Ax||22 + λ||x||1 s.t. λ > 0

(3)

Input: m× n A matrix (Znode), y (∆Vnode)
Initialize: x = 0, S = ∅, r = y −Ax = y
Find the column in A most correlated with residual r:

i = arg max
i
aTi r

x̂i = max
i
aTi r

S ←− S ∪ {i}

(4)

Move xi from 0 toward its least-squares coefficient x̂ik ,
updating the residuals until some predictor aj has as much
correlation with the current residuals as ai; then add it to S.

S ←− S ∪ {j} (5)

Move xi and xj towards the direction defined by their joint
least-squares coefficient (6) until some other predictor ak has
as much correlation with the current residual.

δk = (AT
SkASk)−1AT

Skr (6)

Then add it to the S:

S ←− S ∪ {k} (7)

Continue this process of adding predictors for (m−1, n) steps
until full OLS solution is obtained. If n < m, all predictors
are in the model.

B. Fault Location as a Sparse Estimation Problem
When a power system operating in the normal steady state

conditions experiences a disturbance caused by a fault on a
transmission line, voltage transients can be observed on all
system buses. Considering the hypothetical scenario where
there are no protective relays and thus the fault is sustained,
this transient will gradually diminish and bus voltages will
settle at new post-fault steady state values. Hence, a sustained
fault will generate a voltage change on all system buses.
Assuming that all system buses are equipped with PMUs, it
will be trivial to directly solve for the virtual fault current
injections using the equation:

Znode ∗∆I = ∆V (8)

where Znode represents the bus impedance matrix, ∆I is the
sparse virtual fault current injection vector and ∆V is the
vector of voltage changes at system buses due to the fault.
Note that unless the fault happens to be at a specific bus, ∆I
will have two non-zero entries, corresponding to the faulted
line terminal buses for a single phase circuit.

Therefore, having access to all entries of ∆V and solving
the equation (8) for ∆I , equivalent current injections at faulted
line terminal buses as shown in Fig. 1 can be solved. Fault
location along the transmission line can then be determined
using the following relation between the equivalent current
injections:

Ik = If
Zfm

Zfm + Zkf

Im = If
Zkf

Zfm + Zkf

(9)
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Fig. 2. Fault on transmission line with protection actuation (a) and without
protection actuation (b).

consequently:

Fault Location(m) =
Ik

Ik + Im
∗ 100%

Fault Location(k) =
Im

Ik + Im
∗ 100%

(10)

where Ik and Im represent the equivalent fault current
injections at buses k and m, respectively. Zkf and Zfm

represent the equivalent impedance between the terminal nodes
and the fault point.

Unfortunately, in a typical power system only a small
percentage of the buses have PMUs. Thus, equation (8) will
be under determined and solution for ∆I will not be possible.
However, since it is known a priori that the solution will
contain at most six non-zero entries, considering the case of a
3φ to ground fault, sparse estimation can be used to identify
the correct ∆I vector, even when only a small subset of entries
of ∆V are available.

Since the LARS algorithm cannot directly process complex
numbers, the network equation given by (8) is transformed
into a set of real equations as follows:

[
<(Znode) −=(Znode)
=(Znode) <(Znode)

]
∗
[

∆<(Inode)
∆=(Inode)

]
=

[
∆<(Vnode)
∆=(Vnode)

]
(11)

where < and = denotes the real and imaginary parts of a
complex number, respectively.

The remaining issue is to obtain accurate measurements
of pre-fault and post-fault bus voltages at those few buses
with PMUs. After the fault is detected by the relays, it is
usually cleared by circuit breakers after a few cycles. Once the
topology changes, the following steady state voltages provided
by the PMUs will no longer reflect the post-fault conditions,
hence cannot be used by the proposed algorithm. Since PMUs
are not able to readily provide the post-fault steady state
voltage due to the fast acting relays that clear the fault, these
values need to be estimated by a separate algorithm. Modern
PMUs, however, can capture the voltage transients between the

Fig. 3. Sparse Estimation Based Fault Location - Flowchart

fault occurrence and clearance. This information can be used
to estimate the post-fault steady state voltage, as described in
the next section.

III. POST FAULT STEADY STATE ESTIMATION

This section describes the use of Prony analysis in order
to estimate the post-fault steady state bus voltages from a
recording of the same bus voltage during the first few cycles
of fault transients, before the relays operate and clear the fault.
As mentioned, after the fault is isolated the steady state voltage
measurements cannot be used for the fault location estimation
formulation, since they represent a different system topology.
However, the post-fault steady state voltage can be estimated.
An example of a bus voltage profile, considering the incidence
of a system fault, with and without protection actuation can
be seen in Figs. 2(a) and 2(b) respectively.

Modern PMUs have the capability of, not only providing
synchronized voltage and current angles and magnitudes, but
also recording high frequency transients of those quantities
for analysis purposes. As demonstrated in [11], it is possible
to use such recorded transients to estimate the post-fault
steady state voltage. This estimation is based on Prony
Analysis, a deterministic exponential model that provides
the best performance for modeling power system transients
when compared with other available techniques (e.g. Fourier
transform, auto regressive or auto regressive moving average
models) [16].

The proposed digital filter is based on the identification of
a transfer function that represents accurately the time-domain
response of a given system [17]. The input signal is analyzed
and the following mathematical procedure yields the desired
transfer function:

H(z) =

∞∑
n=0

h(n)z−n (12)

where h(n) is the impulse response related to H(z) by the z
transform. It can also be described as a transfer function:
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Fig. 4. Voltage Estimation Result - Bus 100 - Phase A - 3φ to ground Fault
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Fig. 5. Voltage Estimation Result - Bus 100 - Phase A - φ to φ Fault

H(z) =
B(z)

A(z)
=
b0 + b1z

−1 + b2z
−2 + · · ·+ bmz

−m

1 + a1z−1 + a2z−2 + · · ·+ anz−n
(13)

where B represent the m zeros and A represent the n poles
of the transfer function H(z). The above equation can also be
written as:

B(z) = H(z) ∗A(z) (14)

As a matrix product, the first k + 1 terms of the impulse
response can be expressed as:



b0
b1
b2
...
bm
0
...
0


=



h0 0 0 · · · 0

h1 h0 0
...

h2 h1 h0 · · ·
...

...
. . .

hm
...

...
...

...
...

hk hk−m


.


1
a1

a2

...
an

 (15)

or in a simplified form: b
· · ·
0

 =

 H1

· · · · · · · · ·

h21

... H2

 .
 1
· · ·
a∗

 (16)

where b is the vector of m + 1 numerator coefficients, a∗ is
the vector of n denominator coefficients, with a(0) = 1. This
format of H matrix is used to simplify the transfer function
calculation as:

0 = h21 +H2.a
∗ or h21 = −H2.a

∗ (17)

0 0.05 0.1 0.15 0.2 0.25 0.3
Time (s)

-1

-0.5

0

0.5

1

Fault Incidence Steady State

Measured
Estimated
Error (x100)

Fig. 6. Voltage Estimation Result - Bus 49 - Phase A - 3φ to ground Fault
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Fig. 7. Voltage Estimation Result - Bus 56 - Phase A - φ to ground Fault

and
b = H1.a (18)

where a∗ and b yields, respectively, the denominator and
numerator coefficients of the transfer function (13). This
mathematical procedure provides a transfer function equivalent
model based on sample data. This model can be used to
estimate the behavior of the system.

IV. SIMULATIONS

In order to evaluate the proposed algorithm, a test system
is modeled in ATP, providing representative voltage transient
waveforms of fault occurrence and protection actuation. The
selected sparse set of synchronized waveforms are, thereafter,
submitted to the Prony analysis algorithm to calculate the
post-fault steady state voltages, as described in Section
III. Along with the pre-fault steady state voltages, directly
measured by PMUs, the post-fault estimated voltages make
it possible to calculate the corresponding entries of the
vector ∆Vnode, whose dimension will typically be quite small
compared with the system size. Extracting the corresponding
rows of Znode and using the sparse estimation algorithm
discussed in Section II the equivalent fault current injections
are estimated. Fault location can then be calculated using (10).
A flowchart of the overall fault location procedure is shown
in Fig. 3.

A. Test System

The positive sequence newtork model of the IEEE 118-bus
system is expanded to a full detailed 3φ model. ATP is
used to provide both pre-fault steady state and fault transient
voltage waveforms. Note that the 3φ transmission lines are
modeled with their self and mutual impedances. Line charging
is also considered. All transformers (modeled as Wye-Wye
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Fig. 8. Sparse Estimation Result - Fault at 50% of Line 101-102 -
3φ to ground
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Fig. 9. Sparse Estimation Result - Fault at 5% of Line 101-102 - φ to φ

grounded), capacitors, reactors and loads are also represented,
providing adherence the unifilar model.

The 3φ voltage waveforms, provided by ATP, are captured
between the fault application and the circuit breaker actuation
using a time step of 0.1ms. According to [11], this resolution
optimizes the process, providing enough information for
accurate estimation without burdening the analysis with high
frequency transients, whose influence on the estimator results
is negligible and can be conveniently disregarded.

It is shown in [11] that 1.5 cycles of fundamental frequency
provided enough information to predict the post-fault steady
state voltage with less then 1% of error for all the simulated
scenarios. It is also shown that the more cycles are used
the more accurate will be the prediction. The simulations
presented in the next section consider 3 cycles of fundamental
frequency between the occurrence and clearing of the
fault. According to [18], this is a conservative assumption
for fault clearance considering the available technology of
today’s protection systems. In the following simulations, the
discrepancy between the estimated and true post fault voltages
obtained using 3 cycles of information is found to be less than
0.1%.

The post fault steady state estimator, discussed in Section
III, uses a total of 18 cycles of voltage waveform data for all
buses and phases selected. The first 6 cycles are measured,
used to compute the pre-fault steady state voltage, since
the fault is applied at the beginning of the 7th cycle with
respect to a reference sine wave. As mentioned above, 3
cycles of transients, measured right after the fault, are used
to estimate 12 cycles of the post-voltage waveforms. The first
6 estimated cycles are discarded in order to avoid errors caused
by fault transients, and the last 6 cycles are used to estimate
the post-fault steady state voltage. Those voltages are then
subtracted to provide the voltage difference caused by the
fault. Note that both pre and post-fault voltage waveforms
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Fig. 10. Sparse Estimation Result - Fault at 20% of Line 50-57 -
3φ to ground
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Fig. 11. Sparse Estimation Result - Fault at 65% of Line 50-57 - φ to ground

are compared to a reference sine wave (1∠0°) in order to
accurately determine the voltage angle.

B. Simulated Scenarios

The proposed algorithm for fault location is tested by
simulating faults at various locations in the 3φ IEEE 118
bus system ATP model. Three types of faults are considered:
3φ to ground, φ to ground and φ to φ. Note that in Figs. 8
to 11 all results are referred to a bus index as follows:

Bus Index = [{bA bB bC}reali , {bA bB bC}imag
i ]

for i = 1, ..., n.
(19)

where n refer to the total number of buses in the system.
For all presented simulations, three phase voltage

measurements are assumed to exist at randomly selected 31
buses out of the 118 total buses. As shown in [10], it is possible
to check the uniqueness of solution of the sparse estimation
algorithm for a given set of measured buses. Note that terminal
buses of lines with simulated faults are intentionally excluded
from the set of measured buses. Tables I to IV present the
estimated fault current and fault location calculations, based
on (10), for all the simulated scenarios.

1) Fault Along Line 101 – 102: Two scenarios are created
on line 101 - 102 where a 3φ to ground and a φ to φ fault
are simulated at 50% and 5% of the line length, respectively.
Estimated post fault voltages, at measured buses close to the
fault, can be seen in Figs. 4 and 5. Determined fault locations
are shown in Figs. 8 and 9. Numerical results are also given
in Tables I and II.

2) Fault Along Line 50 – 57: Similar to the above case, a
3φ to ground and a φ to ground fault are simulated at 20%
and 65% of the line length respectively, along line 50 – 57.
Estimated post fault voltages, at measured buses close to the
fault, are shown in Figs. 6 and 7. Determined fault locations



TABLE I
ESTIMATOR RESULT - FAULT AT 50% OF LINE 101-102 - 3φ to ground

Bus Phase Est. Current Est. Fault Location
101 A 3.1680− 1.6288i 50.23%
101 B −2.9593− 1.9708i 50.39%
101 C −0.1888 + 3.6698i 48.99%
102 A 3.1964− 1.6470i 49.77%
102 B −3.0505− 1.9312i 49.62%
102 C −0.1569 + 3.5260i 51.01%

TABLE II
ESTIMATOR RESULT - FAULT AT 5% OF LINE 101-102 - φ to φ

Bus Phase Est. Current Est. Fault Location
101 A 5.8731− 1.6913i 4.80%
101 B −6.1302− 2.0764i 3.93%
102 A 0.2956− 0.0875i 95.20%
102 B −0.2402− 0.1105i 96.10%

TABLE III
ESTIMATOR RESULT - FAULT AT 20% OF LINE 50-57 - 3φ to ground

Bus Phase Est. Current Est. Fault Location
50 A 5.5416− 4.2220i 20.74%
50 B −6.4571− 2.7499i 20.52%
50 C 0.8004 + 7.0102i 19.58%
57 A 1.5136− 1.0149i 79.29%
57 B −1.6724− 0.6971i 79.48%
57 C 0.2637 + 1.6973i 80.43%

TABLE IV
ESTIMATOR RESULT - FAULT AT 65% OF LINE 50-57 - φ to ground

Bus Phase Est. Current Est. Fault Location
50 A 1.5151− 0.8897i 65.65%
57 A 2.2741− 2.3604i 35.20%

are shown in Figs. 10 and 11 and corresponding numerical
results are provided in Tables III and IV.

C. Discussion of Results

Results from the proposed algorithm, presented in Tables
I to IV strongly confirm the capability of the method to
accurately estimate the location of different types of faults
in the simulated scenarios. Note that the estimation remains
rather insensitive against noise generated by the Prony based
post-fault voltage estimation algorithm, as evident in Figs. 4
to 7. As evident from Figs. 8 to 11 the sparse estimation
algorithm yields a few non-zero current injections at buses
not incident to faulted line. Fortunately, these can be easily
filtered using an appropriate noise threshold as indicated by
the red lines in the figures. The thresholds are typically system
dependent and can be empirically determined.

V. CONCLUSIONS

This paper presents a wide-area fault location sparse
estimator. It uses pre-fault synchronized voltage measurements
from PMUs installed at a small number of system buses,
post-fault steady state voltages that are predicted using
Prony analysis and few cycles of transient voltage recordings
captured after the fault occurrence, also provided by PMUs.
The objective is to develop a fast and reliable fault

location procedure, and to accomplish this without additional
investments on hardware.

The paper contains simulation results that consistently show
accurate fault location, with errors in the order of 1% for
different types of faults and locations. They illustrate that
the proposed algorithm is insensitive to fault type, flexible
and can be conveniently implemented in any transmission or
distribution system, provided that a sparse set of PMUs and
an accurate network model are available.

For future work, the intention is to validate the proposed
fault location algorithm using measurements recorded during
actual fault incidents.
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