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Abstract—With the rapidly increasing penetration of
power-electronic based renewable energy generation units, new
opportunities and challenges have been raised. Among others,
the challenges result from their interactions with nearby existing
turbine generators in the subsynchronous frequency range. A
design strategy which considers the impact of such interactions
on stability of the subsynchronous oscillations is of special
importance. For this purpose, a simple approach of modeling and
analyzing MMC-based HVDC systems with the aforementioned
challenges is proposed in this paper. The proposed approach is
characterized by considering a so-called emulation-based design
strategy. A condition of stability is derived from the Nyquist
criterion for stable open-loop transfer functions. Its effectiveness
is evaluated for a detailed representation of the system under
study in the PSCAD environment.
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I. INTRODUCTION

ANALYSIS of subsynchronous resonance (SSR) in power
systems has been received considerable attention both

in academia as well as in industry. This is witnessed by
several publications in literature, see e.g. the monographs
[1], [2], [3] and the survey paper [4]. Among others, the
torsional interaction effect between the active control units of
an HVDC and long shafts of nearby turbine generators might
cause such SSR issues. Depending on the control structure
and the control setting, the natural torsional frequencies of
the combined system might be excited in an unstable manner.
Due to the current trend of power-electronic based renewable
energy generation units, the impact of such devices on stability
of the subsynchronous oscillations becomes a very important
research topic.

Since the subsynchronous torsional interaction (SSTI)
is a steady-state phenomenon, many approaches based on
small-signal analysis have been proposed in literature [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14]. Most of the
aforecited approaches are based on the partition of the system
under study into a mechanical part and an electrical part.
The impedance of each is first determined and the impedance
ratio is then used to judge the stability of each torsional
mode. The interaction of the converter station with the ac
system is thus characterized by its impedance, as seen from
the ac system. The shape of this impedance depends on the
chosen control structure as well as on the chosen control

The authors are with the Siemens AG, Energy Management Division,
Transmission Solutions, Freyeslebenstraße 1, 91058 Erlangen, Germany
(E-mail of corresponding author: sanad.al-areqi@siemens.com).

parameters. The impedance-based stability analysis has been
applied to different power electronic devices, including wind
turbines [13], PV inverters [9], HVDC converters [10], [5],
and STATCOM [8]. Due to the fact that almost all power
electronic circuits are nonlinear, the impedance-based linear
representation is only valid for small-signal analysis.

Modeling and control of HVDC systems are usually
conducted in the rotating dq-frame. This allows the further use
of the conventional small-signal analysis tools and techniques.
Even if the resulting converter impedance matrix is diagonal
or diagonalizable, the effective impedance of the generator is
usually a full square matrix. Integrating both impedances leads
to a coupling between the d-component and the q-component
dynamics, making the stability analysis a very difficult task.
The analysis is usually performed numerically and hence no
way to see the effects of individual components and design
parameters on stability.

In order to cope with the underlying difficulty, a simple
analytical approach of modeling and analyzing the stability
based on the Nyquist theory for single-input single-output
(SISO) systems is proposed in this paper. A mathematical
model of the MMC-based HVDC system, as shown in
Figure 1, is first derived. Further details on the system
architecture are given in the following section.

Figure 1. Schematic diagram of an MMC-based HVDC system

The resulting nonlinear model is then linearized about an
initial operating condition for further small-signal analysis.
Based on the linearized model, an emulation-based design
method [15] is considered. Emulation-based design is a
two-step design procedure with which a controller of the
HVDC is first determined using classical control theory
(„design step“) and then the stability of the closed-loop system
taking the mechanical dynamics of the turbine generator
explicitly into account is studied („implementation step“). A
condition of stability for the d-component as well as for the
q-component is followed from the Nyquist criterion for stable
open-loop transfer functions. The proposed stability condition
allows invaluable insight into the effect of the controller
as well as of the dq-coupling terms on the stability. The



Figure 2. IEEE first benchmark model of the rotor system

effectiveness of the proposed theory is finally evaluated for
a case study.

Throughout the paper the following notation is used:
Scalars are denoted by lower- and upper-case non-bold
letters (a, b, . . . , A,B, . . .), vectors by lower-case bold letters
(a, b, . . .), matrices by upper-case bold letters (A,B, . . .), and
sets by upper-case double-struck letters (A,B, . . .). Finally,
A−1 denotes the inverse of matrix A and R+

0 the set of
non-negative real scalars.

II. MODELING

A. System Architecture

Consider the MMC-based HVDC system shown in Figure 1.
It consists of two stations, namely Station A on the left-hand
side and Station B on the right-hand side. Each station is
connected from its ac side through a common busbar with
a simplified ac network. The ac network is represented with
an infinite source in series with an output impedance and a
generator in series with a power transformer. The strength
of the ac network, as seen from the converter station, can
be changed by varying the output impedance of the infinite
source. The rotor of the generator is represented with a
multi-mass model, details on the multi-mass model are given
in the following section. Finally, a dc transmission line (cable,
overhead, or combination of both) is connecting each dc pole
with its counterpart.

The following derivation of the ac system’s mathematical
model is splitted into two parts, namely mechanical part
and electrical part. Furthermore, the branch that includes
the infinite source and its corresponding output impedance
is neglected in the following for simplicity of presentation
without loss of generality. By doing so, the positive damping
contribution of the output impedance on the torsional
oscillations is neglected, focusing only on the effect of the
converter station. From this perspective, the proposed analysis
in this paper considers worst-case conditions concerning the
subsynchronous torsional stability.

B. Mechanicl Part

The focus in this section is on the modeling of the
rotor system of the turbine generator under study. The IEEE
first benchmark model [16] for the study of subsynchronous

resonance is considered, as shown in Figure 2. The equations
of motion of the utilized multi-mass model are given by

J1
d2δ1
dt2

= T1 −K12(δ1 − δ2)−D1 ·∆ω1

J2
d2δ2
dt2

= T2 +K12(δ1 − δ2)−K23(δ2 − δ3)−D2 ·∆ω2

J3
d2δ3
dt2

= T3 +K23(δ2 − δ3)−K34(δ3 − δ4)−D3 ·∆ω3

J4
d2δ4
dt2

= T4 +K34(δ3 − δ4)−K45(δ4 − δ5)−D4 ·∆ω4

J5
d2δ5
dt2

= K45(δ4 − δ5)− T5 −K56(δ5 − δ6)−D5 ·∆ω5

J6
d2δ6
dt2

= K56(δ5 − δ6)− T6 −D6 ·∆ω6

with the parameters described in Table I ∀i, j ∈ {1, . . . , 6}.

TABLE I
PARAMETER DESCRIPTION FOR THE MULTI-MASS MODEL

Parameter Description Unit

Ji Moment of inertia kg.m2

Ti Torque applied to mass i N.m
Di Damping coefficient N.m.s/rad
Kij Shaft stiffness N.m/rad
δi Angular position of mass i = ωit− ω0t rad
ωi Speed of mass i rad/s
ω0 Rated speed of mass i rad/s
∆ωi Speed deviation of mass i = ωi − ω0 rad/s

The corresponding mechanical transfer function to be used
later on in the stability analysis is thus given by

Gm(s) =
δ5(s)

T5(s)
=

δ(s)

Te(s)
(1)

with the rotor angle δ and the generator air-gap torque Te.

C. Electrical Part

For the electrical part, a simplified transient model of the
generator (classical model) is considered [1, Sec. 5.3.1]. The
generator is modeled as a fixed voltage source ugen behind an
output impedance Zgen. The magnitude û and the frequency ω0

of the voltage source are assumed to be constant while using its
angle with respect to a synchronously rotating reference frame
as a measure of the rotor angle δ. The same simplification
applies to the converter station, which can be modeled as a



Figure 3. Single-line diagram of the electrical model

controlled voltage source uconv behind an output impedance
Zconv. The converter is connected to the common busbar via
a power transformer as well. A single line diagram of the
resulting electrical model is illustrated in Figure 3. Note that
the active control units of the converter are not yet considered.

Applying the Kirchhoff’s voltage law to the electrical model
in Figure 3 leads in the rotating dq-frame to the electrical
transfer function matrix

Ge(s) =
idq(s)

udq(s)
(2)

where idq(s) is the current flowing from the converter towards
the generator and udq(s) = uconv(s) − ugen(s) is the
voltage difference between the converter and the generator.
As a reference for the dq-transformation, the common busbar
voltage upcc has been chosen. Integrating the mechanical
model (1) with the electrical model (2) yields finally the
overall model of the ac system as shown in Figure 4.

Figure 4. Block diagram of the ac system’s overall model

Although the resulting mechanical and electrical models are
linear time-invariant, the resulting overall model is due to the
generator’s torque/voltage equation unfortunately nonlinear.
For the purpose of analyzing the stability in the frequency
domain, the overall model is linearized about an initial
operating condition in the following section.

III. STABILITY ANALYSIS

Consider the well-known standard control structure shown
in Figure 5 for modular multilevel converters [17], [18], with
the decoupling matrix denoted by L(s) and the diagonal
control matrix denoted by Kdiag(s). The control parameters

Figure 5. Block diagram of the standard control structure

are determined by only taking the electrical transfer function
matrix defined in (2) into account, i.e. emulation-based design.

The inner loop composing of the electrical transfer function
matrix Ge(s) and the decoupling matrix L(s) yields a diagonal
matrix

Gdiag(s) = Ge(s) ·
(
I +L(s)Ge(s)

)−1
. (3)

The outer loop composing of the diagonal matrix Gdiag(s)
and the diagonal control matrix Kdiag(s) yields further an
electrical admittance matrix

H−1
diag(s) = Gdiag(s) ·

(
I +Kdiag(s)Gdiag(s)

)−1
. (4)

Linearizing the generator voltage equation defined in
Figure 4 about an initial operating condition δ = δ0 yields

∆ugen =

(
−û sin(δ0) ·∆δ
û cos(δ0) ·∆δ

)
. (5)

Linearizing further the electrical torque equation defined also
in Figure 4 about an initial operating condition δ = δ0, id =
id0, and iq = iq0 yields

∆Te = kδ ·∆δ + kd ·∆id + kq ·∆iq (6)

where

kδ =
∂Te

∂δ
=

3û

2ω0
·
(
− sin(δ0)id0 + cos(δ0)iq0

)
kd =

∂Te

∂id
=

3û

2ω0
· cos(δ0)

kq =
∂Te

∂iq
=

3û

2ω0
· sin(δ0).

The concatenation of the linearized voltage (5), the mechanical
transfer function (1), and the linearized torque (6) yields a full
impedance matrix

Zfull(s) =
ugen

idq
=

(
Z11 −Z12

Z21 Z22

)
. (7)

The resulting linearized closed-loop model is depicted in
Figure 6 with the harmonic impedance Hdiag = diag(Hd,Hq)
and the effective generator impedance

Zd = Z11 + Z12 · (Hq + Z22)
−1 · Z21

Zq = Z22 + Z21 · (Hd + Z11)
−1 · Z12.

(8)

Assume that the full impedance matrix in (7) is internally
stable, i.e. all transfer functions obtained from all input-output
pairs have their poles in the left-half plane (input-output
stable). Assume further that the admittance matrix (4) and the
effective generator impedance (8) are also internally stable,



Figure 6. Block diagram of the linearized closed-loop model

as is usually the case. What left is just to prove the internal
stability of the closed-loop model shown in Figure 6.

Theorem 1. For the internally stable admittance matrix (4)
and the effective generator impedance (8), the closed-loop
model shown in Figure 6 is internally stable if ∀ω it holds

Re{Hd(jω)} ≥ 0 and Re{Hd(jω)}+ Re{Zd(jω)} > 0

Re{Hq(jω)} ≥ 0 and Re{Hq(jω)}+ Re{Zq(jω)} > 0
(9)

with Re{·} denoting the real part of a complex number.

Proof. Due to their similarity, the proof is done in the
following for the d-component only. The corresponding
open-loop transfer function is given by

Ld(s) =
1

Hd(s)
· Zd(s) (10)

The open-loop transfer function (10) is stable. According to
the Nyquist criterion for stable open-loop transfer functions
[19, Chapter 9], the closed-loop model is stable if and only if
its Nyquist plot 1+Ld(jω), ∀ω, neither intersects the critical
point (0, j0) nor encircles it. This is equivalent for all ω to

1 + Ld(jω) ̸= −σ ∀σ ≥ 0 (11)

with the symbol σ denoting any non-negative real scalar σ ∈
R+

0 . Substituting (10) with s = jω into (11) leads ∀ω to

Hd(jω) + Zd(jω) ̸= −σ ·Hd(jω) (12)

or equivalently,

Re{Hd(jω)}+ Re{Zd(jω)} ̸= −σ · Re{Hd(jω)}. (13)

The feasibility of (9) implies the feasibility of (13), completing
thus the proof.

Remark 1. For the special case of a strictly passive effective
impedance Zd(s), i.e.

Re{Zd(jω)} > 0 ⇔ |∠Zd(jω)| < 90◦ ∀ω

the passivity [20], [21], [22] of the harmonic impedance
Hd(s), i.e.

Re{Hd(jω)} ≥ 0 ⇔ |∠Hd(jω)| ≤ 90◦ ∀ω

guarantees, according to (9), the stability of the d-component
closed-loop model shown in Figure 6. The same statement can
be made for the q-component closed-loop model as well.

-4

-2

0

2
10-5

-10

-5

0

5
10-6

10 20 30 40
-5

0

5

10
10-5

10 20 30 40
-4

-2

0

2
10-5

Figure 7. Real part of the resulting full impedance matrix Zfull

IV. SIMULATION

A detailed representation of the MMC-based HVDC system,
as shown in Figure 1, is implemented in the PSCAD
environment. The mechanical torques between the masses of
the multi-mass model, as shown in Figure 2, are monitored to
demonstrate the effect of the converter’s harmonic impedance
on the subsynchronous torsional stability. The torsional
frequencies of the multi-mass model are summarized in
Table II.

TABLE II
TORSIONAL FREQUENCIES OF THE MULTI-MASS MODEL

Mode Torsional Frequency in Hz

1 14.19
2 20.73
3 24.76
4 31.86
5 39.10

The operating condition of the generator is chosen as

û = 1.06 p.u.

Pe = 0.35 p.u.
(14)

Based on the chosen torsional modes and the initial operating
condition, the real part of the resulting full impedance matrix,
defined in (7), is depicted in Figure 7. Almost zero mechanical
damping is assumed here for the subsynchronous torsional
modes, although a small mechanical damping always exists
in reality.

Consider further the standard control structure shown in
Figure 5. Based on the resulting full impedance matrix Zfull
and the standard control structure, two simulation scenarios are
performed in the following. In the first scenario, the control
parameters are tuned such that the stability condition (9) is
not satisfied for some of the chosen torsional modes. In the
second scenario, the stability condition (9) is satisfied for
all frequencies of interest. In this manner, the effect of the
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Figure 8. Resulting torsional torques for the first scenario
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Figure 9. Resulting torsional torques for the second scenario

resulting harmonic impedance on the torsional modes can be
measured from the stability preservation perspective.

The simulation results for the first scenario are depicted
in Figure 8. The ac system is subject to a three-phase fault
disturbance impulse at time instant t = 10 s. As expected,
the ac system can not recover successfully. The simulation
results for the second scenario, where the stability condition
(9) is satisfied, for the same load flow are depicted in Figure 9.
Obviously, the system stability is preserved while positively
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Figure 10. Resulting torsional torques without HVDC

contributing to the torsional damping. The ac system recovers
successfully without any voltage/rotor stability issues. The
positive damping effect of the HVDC has been evaluated
by comparing it with the resulting torsional torques without
HVDC. The results of the simulation scenario without HVDC
are illustrated in Figure 10. A clearly damped behavior can
be observed without HVDC, indicating the electrical positive
damping contribution of the ac network itself. The magnitude
of the resulting torsional torques with HVDC is however
reduced much faster than without it.

To sum up, by satisfying the stability condition (9) not only
stability of the system under study can be guaranteed but also
its performance (measured by the torsional damping) can be
improved as well.



V. CONCLUSIONS

A novel approach of modeling and analyzing MMC-based
HVDC systems while considering the interactions with nearby
turbine generators in the subsynchronous frequency range is
proposed in this paper. The proposed approach is characterized
by considering a so-called emulation-based design strategy
with which the a stabilizing controller of the HVDC is first
determined using classical control theory and then the stability
of the system taking the mechanical dynamics of the turbine
generator into account is studied. The effectiveness of the
proposed theory is illustrated for a detailed representation of
the MMC-based HVDC system in the PSCAD environment,
showing its ability to predict system resonance caused by the
lack of stability margin.
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