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Abstract--Real-time EMT simulation relies on multi-cores 

computers to accelerate the simulation through 

parallelization. It also increases simulation accuracy 

allowing the use of a lower time step. First, the network 

has to be split into several tasks using a separation 

technique. Then, each task has to be allocated/mapped to a 

processor. This paper focuses on this problem which can 

be formulated as a TAP (Task Allocation Problem). To 

find an optimal task allocation operational research 

techniques can be used. Heuristics such as graph 

partitioning allow to get fast solutions. Their performances 

are asserted with very large networks and real-time 

simulator architectures, both from TSO grids. Exact 

resolution methods are used to verify solution quality. The 

validation of each task mapping strategy is done through a 

real EMT case study which involves real-time Hardware-

in-the-Loop simulation. 

 

Keywords: Real-time simulation, Parallel simulation 

Optimization, Task Allocation Problem, graph partitioning, 
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I.  INTRODUCTION 

he need of real-time EMT simulation has increased with 

the development of electronics devices in the transmission 

network related to the high penetration of wind power 

farms and HVDC links. Since 2011, the French TSO, RTE, 

has created his own real-time laboratory SMARTE to study 

interaction between this new power equipment. Hard-in-the-

Loop simulation, which connects a real-time simulator to a 

replica of the on-site control system, allows to perform 

accurate EMT studies close to on-field phenomena. Otherwise, 

the utility of replica is various from maintenance activities to 

real-time event studies which have occurred on the network 

[1]. In order to improve accuracy, detailed network are used 

for EMT simulation [2] although interesting network reduction 

methods based on frequency equivalent [3] [4] help in certain 

cases to accelerate the simulation. 

To cope with large networks, real-time EMT tools take 

advantage of the parallelization offered by the multi-cores 

supercomputers used as real-time simulators [2]. Indeed, it 

accelerates the simulation and respects the time constraint to 

be able to interact with hardware device. The parallelization is 
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automatically performed in two steps. First, the network is 

separated into several tasks. Then, each network task is 

mapped to the simulator’s processors before starting the 

parallel simulation. The stability of a real-time simulation 

depends strongly on the result of this task mapping. 

Previous works [2] [5] have demonstrated the efficiency of 

graph partitioning algorithms [6] on some Software-in-the-

Loop (SIL) examples. However, no full study has been done 

to assert the performance on industrial cases and the 

optimality of found solutions. This paper proposes to fill this 

gap. After reminding the problem formulation as a Task 

Allocation Problem (TAP) [7] and presenting heuristic 

techniques, very large realistic network instances are tested 

with real architectures to verify algorithms performance. Then, 

a deep analysis of the whole graph partitioning algorithm 

allows to understand its advantages and limits. Additionally, 

exact solutions from a linear programming formulation are 

first used in this paper to assert the quality of solutions of the 

graph partitioning algorithms. Lastly, in complement to 

previous SIL examples, a Hardware-in-the-Loop (HIL) set-up 

of three-terminal HVDC grid with DC Circuit Breakers 

validates the efficiency of the task allocation algorithm and 

discusses the mapping strategy. 

All algorithm implementations and testing have been done 

on the real-time EMT tools HYPERSIM [8] which proposes a 

fully –automatic network parallelization. 

II.  TASK ALLOCATION PROBLEM 

A.  Task Separation 

The first step of parallelization is to split the network into 

several tasks which will be run in parallel on several cores. 

Two main separation techniques are used for the split. 

The first one relies on decoupling element as power lines. 

If the propagation delay is greater than the simulation time 

step, tasks can be separated through the lines as the delay 

allows to transmit computed value for the next time step. 

Based on this principle, for real-time, a topology analysis is 

automatically performed to split the network into sub-

networks according to power lines. Otherwise, off line tools 

perform parallelization directly on the nodal resolution [9] 

[10]. 

When the decoupling is not possible through power lines, 

others techniques have to be used. Hybrid method resolutions 

based on Nodal formulation and State-Space allow to separate 

the network into State-space equivalents that can be solved in 

parallel [11]. Also the Multi-Area Thévenin Equivalents 

(MATE) method [12] or Compensation Method (nonlinear 

networks) [13] can split the network without using the natural 

delay of power lines and can be fully automated [14]. 

T 
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The second step of parallelization consists in assigning 

tasks to processors (Task Mapping Problem). 

B.  Task Mapping Problem formulation 

The Task Allocation Problem, TAP, is a well-known 

problem in the literature of combinatorial optimization [7] 

[15]. It consists of mapping a network of elements called 

“tasks” to a set of connected containers called here of 

“processors”. A task is said to be allocated to a processor 

when it is mapped uniquely to it. 

Each task has a cost of allocation/an estimated execution 

time and each processor has a budget to it, the time-step 

constraint for real-time simulation. A TAP solution is said to 

be valid if every task is allocated and there is no budget 

overflow, i.e., the time-step constraint is respected. An optimal 

solution is a valid one that minimizes the communications cost 

– the sum of the weighted connections between tasks allocated 

on different processors. 

Given the NP-complete complexity [16] of the problem, the 

use of heuristic-base approaches becomes necessary to find 

good solutions to the problem using a small amount of time. 

Two heuristics [5] have been implemented. 

C.  Heuristic algorithms 

    1)  A* 

Based on the A* algorithm, the first method [5] follows a 

tree-shaped scheme. Each separation is composed by ordered 

pairs (𝑇𝑖 , 𝑃𝑗)  indicating that the task 𝑇𝑖  is allocated to the 

processor 𝑃𝑗. This tree has as many levels as tasks and as many 

leaves as combinations of tasks and processors. At each level a 

new task is allocated to a processor and it halts when all the 

tasks are allocated. By choosing the next pair, the algorithm 

tries to minimize the communication cost and to balance 

processor loads. 

    2)  Graph Partitioning 

The second method is based on graph partitioning 

techniques [6]. These heuristics are commonly used to 

automatically parallelize EMT simulations [5] [14] [16]. The 

goal of the algorithm is to map a “Source Graph”, SG, to a 

“Target Graph”, TG. It consists of partitioning the former and 

then mapping the resulting subsets of source vertices to a 

target vertex. Source edges, in the other hand, are mapped to a 

subset of edges in the TG. This subset is the smaller path 

between two target vertices previously adjacent in the SG. 

Minimizing the communication cost, the algorithm 

agglomerates adjacent source vertices with heavy connecting 

edges in target vertices close to each other, if not in the same. 

Furthermore, it keeps the balance of weights of the target 

vertices according to a constraint δ [17], the Load Imbalance 

Ratio, LIR, that will be discussed later. 

One can see the network of tasks as the SG and the 

“architecture”, the ensemble of processors and its connections, 

as the TG. The TAP is naturally formulated to this case. 

For the rest of this paper, the second method will be further 

developed. The SCOTCH library [6] [17] is used to process 

the graph partitioning. Its results will be compared with those 

of the first method. 

D.  Performance Tests on large instances 

To figure out the performance of both algorithms, setting 

an upper bound, they have to be tested on very large and 

realistic networks. Large instances come mainly from national 

transmission networks. For instance in Figure 1, the whole 

French transmission network (400kV + 225kV) reach 

thousands of tasks (3486 buses, 1056 lines and 274 

transformers). 

Figure 1 French 400 kV (on the left) and 225 kV grid 

For architecture instances, as the real-time simulation runs 

on a single supercomputer (no cluster of pcs), the TG is often 

complete (all inter-processor communication links exist). 

However, the TG is not necessary homogenous (same 

communication cost between each processor). The SGI 

UV100 architecture [18] (96 processors in total) used as a 

real-time simulator on RTE real-time laboratory contains 4 

chassis alternatively with 1 or 2 blades each. A blade contains 

2 sockets/CPUs with 8 cores/processors each. The inter-

chassis communication cost is different from the inter-blade 

one which is different from the inter-socket communication 

and from the inter-core one as well. This architecture is clearly 

heterogeneous.  

Table I below presents the performance results for two very 

large networks for both heuristics (A* and Scotch with 

balance strategy and δ=0.01) on the UV100 simulator with a 

40μs time step. To set up the performance the following 

criteria are used: NbTask, The number of tasks; NbProc, The 

number of processors used; Comm, The total number of 

communication, i.e., the number of signal multiplying by the 

communication link cost (respectively 10, 16, 43, and 65 

respectively for inter-cores, sockets, blades, and chassis 

communication links); Var, The processor load variance to 

measure the load balancing; Time, The execution time of the 

task mapping in seconds (run on host with Intel i7-4910MQ 

CPU @ 2.90GHz). 
TABLE I 

PERFORMANCE RESULTS FOR LARGE NETWORK INSTANCES 

Instance NbTask 
Mapping 

Strategy 
NbProc Comm Var Time 

French 

400kV 
grid 

460 
A* 16 15096 4.93 0.98 

Scotch 16 6960 0.14 0.06 

French 

400kV 

+ 225 
kV grid 

1510 

A* 79 148974 14.35 81.1 

Scotch 79 123216 0.34 0.17 

 

Graph partitioning technique is faster than A* algorithm 

and gives better solutions (lower communication cost and 

better balancing). In absolute, the execution time is quite fast 

(no more than few seconds). Only graph partitioning 

techniques and homogeneous architecture are considered later. 



III.  GRAPH PARTITIONING FOR AN EFFICIENT TASK MAPPING 

A.  A fast graph partitioning algorithm 

    1)  Overview of the algorithm 

The graph partitioning algorithm is composed of several 

routines [6] [17], being the Recursive Bipartitioning, RB, the 

main one. This algorithm recursively bipartitions subsets of 

both SG and TG. The bipartitioning is executed by a Greedy 

Graph Partitioning algorithm, GPA. At each recursive step, a 

subset of the SG will be partially mapped to a subset of the 

TG. In the next recursive step, the resulting sub-subsets in 

both graphs will be mapped accordingly to theirs parents’ 

mapping. 

Others than the RB, more algorithms and post-processing 

methods are available, notably the Multi-level method, ML, 

which has three distinct phases. It is important for the 

performance. It consists of a coarsening phase, in which the 

graph is reduced to a smaller equivalent one, a partition phase, 

where algorithms like RB and GPA are used, and an 

uncoarsening phase, in which the graph grows back to its 

original size. Another important method is the Exactifier, EX. 

It is a post-processing method that balances the partition trying 

to increase the least the communication cost. A combination 

of these methods is called a “strategy”. 

Two strategies are proposed, “Quality” and “Balance”. The 

former prioritizes the minimization of the cost function 

described above, resulting most of times in a slower and more 

unbalanced partition. The latter prioritizes a balanced partition 

at the expense of the quality criteria. Both strategies have the 

same core structure: an external ML to reduce huge graphs to 

big graphs with 5000 nodes during the first coarsening phase 

(step 1) followed by a RB (step 2) that, at each sub domain, 

uses an internal ML coarsening phase to reduce the partitions 

to tiny graphs with 120 nodes (step 3) to finally do the 

bipartition using the GPA (step 4). During the uncoarsening 

phases, internal and external (steps 5 and 6, respectively), 

some post-processing methods are used. At the end of this 

process (step 7), in the case of "Balance", the EX method is 

used to control the LIR. 

Figure 2  Illustrative scheme of the graph partitioning algorithm and its 
steps. 

    2)  Algorithm limits 

As it was explained, the mapping is executed with no 

restrictions on the total allocation cost in each processor. A 

verification is made after: if there is at least one processor in 

which the time-step is exceeded, an available processor will be 

added to the architecture and the partitioning algorithm will be 

run again. This process will repeat until either a mapping is 

valid or there is no more available processors to be added. An 

observable consequence of the validation method is a possible 

excessive use of processors. Since a strategy is a particular 

heuristic combination, it is possible that it will miss a valid 

solution and have to increase the number of processors. 

B.  Hyper parameter tuning 

To overcome previous issues, some modifications were 

implemented. A benchmarked network with 802 vertices and 

2052 edges (332 buses, 513 lines and 42 transformers) has 

been chosen for testing the tuning of hyper parameters. The 

time step is set to 40μs. 

 
Figure 3  Benchmarked example of 802 tasks 

    1)  Load Imbalance Ratio (LIR) 

A relevant metric to characterize a partition is its LIR, 0 < δ 

≤ 1, which measures the total imbalance of charges between 

processors after the partition. It is a constraint in the 

communication minimization problem. Table II presents 

different results obtained when δ varies for both quality and 

balance strategies ("-" means no solution has been found). 
TABLE II 

VALUES FOR δ COMPARISON 

δ Strategy NbProc Comm Var Time 

0.25 
Quality 19 390 8.874 0.036 

Balance - - - - 

0.10 
Quality 18 390 4.644 0.036 

Balance 18 402 4.004 0.033 

0.01 
Quality 17 450 0.463 0.023 

Balance 17 480 0.032 0.018 

 

As δ decreases, the number of processors used in both 

strategies also decreases, particularly, using smaller δ than 

0.25 allowed “Balance” to find a solution with 19 processors 

or less. The communication, however, increased. This happens 

because more communicating tasks are forcedly separated to 

different processors. Since there were fewer attempts, the 

execution times were reduced and so was the variance since 

there were fewer processors and so the tasks were better 

concentrated. 

    2)  Specific Strategy 

As it was highlighted previously, the creation of a specific 

strategy for transmission networks could offer better results 

than generic ones. Table III shows the results of this new 

strategy: 
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TABLE III 

RESULTS FOR THE SPECIFIC STRATEGY 

δ NbProc Comm Var Time 

0.25 18 396 4.979 0.029 

0.10 18 384 3.647 0.036 

0.01 17 444 0.040 0.026 

 

Similarly to “Quality”, the new strategy made a partition in 

all three cases, but it managed to find solutions with fewer or 

the same number of processors and with the communication 

cost in the same magnitude. Its variance is comparable with 

the one obtained in the previous section. 

    3)  Random Seed 

Another possible source of optimization is the random seed 

used in the algorithm. Randomness is used mainly during the 

GPA, when the first node is chosen to start the bipartition. A 

lucky choice may result in a better bipartition. Currently, there 

are iterations over the GPA keeping the best partition among 

them. Iterating over the seed, the algorithm was able to 

improve some of the partitions made in the standard case. 

Table IV shows the results for δ = 0.25: 
TABLE IV 

RANDOM SEED RESULTS 

Strategy NbProc NbIter Comm Var Time 

Quality 18 26 372 6.435 0.257 

Balance 19 32 396 12.13 0.202 

Specific 18 21 396 5.417 0.167 

 

The column NbIter indicates the number of iterations 

before finding the first valid partition. In this example, the 

random seed was iterated 10 times before restart all over 

adding a new processor. Since the starting point is 16 

processors, NbIter = 26 as in the first line means that using the 

“Quality” strategy, the solution was found after the sixth 

random seed iteration with 18 processors. It is better than the 

previous except time for the additional work done. Similarly 

for “Balance”, a solution was found with 19 processors, which 

is a huge improvement from the previous case where no valid 

partition was found. Finally for the new strategy, the partition 

found is exactly the same than before. 

Vary the random seed showed to be a relevant 

optimization, but its natural random character prevents this 

method to guarantee a valid solution. 

C.  Validation toward exact solutions 

    1)  Modeling 

To model the problem, two new Boolean variables must be 

introduced. The first, the allocation variable 𝑥𝑖𝑗is 1 if the task 

𝑖 is allocated to processor 𝑗 and 0 otherwise. The second is 

the dilatation variable 𝜌𝑖𝑗
𝑘𝑙  which values 1 if, for a pair of 

communicating tasks, task 𝑖  is allocated to processor 𝑗 and 

task 𝑘 is allocated to processor 𝑙, and 0 otherwise. The linear 

formulation of the problem is: 

 
min

 

1

𝑇
(∑ |�̅� − 

1

𝜇
∑ 𝑡𝑖

𝑖

𝑥𝑖𝑗|

𝑗

) + (∑ (∑ (∑ 𝑤𝑖𝑘

𝑙≠𝑗

𝜌𝑖𝑗
𝑘𝑙)

𝑗

)
{𝑖,𝑘}

) (1) 

 

Subject to: 

 ∀𝑖, ∑ 𝑥𝑖𝑗 = 1

𝑗

  ;  ∀𝑗, ∑ 𝑡𝑖

𝑖

𝑥𝑖𝑗 ≤  𝜇 (2) 

 ∀{𝑖, 𝑘}, ∀𝑗, 𝑙 | 𝑗 ≠ 𝑙, 𝜌𝑖𝑗
𝑘𝑙 ≥ 𝑥𝑖𝑗 + 𝑥𝑘𝑙 − 1 (3) 

 

Where 𝑇  is the total tasks evaluation time and �̅� is the 

average time per processor. The constant μ is the time 

constraint, 𝑡𝑖 is the evaluation time of task 𝑖 and 𝑤𝑖𝑘  is the 

weight of the communication between tasks 𝑖 and 𝑘.The main 

expression has two distinct parts. The first, the sum over the 

processors, is the LIR. The second one, the triple sum, is the 

Communication Cost, CC. The subsequent equations are, 

respectively, the allocation’s uniqueness, the time-step 

constraint and the relation of both Boolean variables. 

 A benchmarked model of 35 buses is used to compare the 

obtained solutions with those of LP. It has 103 tasks to be 

partitioned among 3 processors, resulting in about 1049 

possible combinations. 

Figure 4  35 buses model 

    2)  Pareto Front 

For the problem studied, the two criteria analyzed are the 

LIR and the CC. The Pareto front allows a comparison of both 

criteria magnitudes and serves as a lower bound for the 

solutions of the problem, allowing to formalize what a “good-

enough” solution is. To find it, the method used is to vary the 

proportional weight either magnitude has. 

To resolve the linear problem, the chosen parallel solver 

was FICOTM Xpress solver [19] and it has been run on a 190 

cores cluster. Figure 5 below shows the comparison between 

the Pareto front and heuristic results. The blue dots forming 

the line are the exact solutions of the LP. The values in 

parenthesis are the respective weights of each side of the 

expression. The marker’s sizes represent the chosen δ values 

(0.01, 0.05, 0.1 and 0.25). 

Figure 5  Pareto front for the 35 buses model 

When compared with the Pareto optimal solutions, one can 

notice that heuristic solutions tend to prioritize the CC, that is, 

it deteriorates, even if not much, the LIR to be able have the 

same CC of an exact solution. Besides, the weights in 

parenthesis mean a strong preference for the LIR in the exact 

solutions (more reasonable proportions than those at the 

bottom-right blue dots result in that same solution). Solutions 



are scattered through the left side figure. 

Finally, to measure the distance between the Pareto front 

and the obtained solutions, the metric used was the smallest 

Euclidean distance between a heuristic solution 𝑣  and an 

exact solution 𝑝 ∈ 𝑃𝐹, the Pareto front, that is: 

 min
𝑝 ∈𝑃𝐹

(‖𝑝 − 𝑣‖2) (5) 

 

Table V shows the measured distance. All distances are in 

order of 10-4, which one can assume to be close enough. 
TABLE V 

DISTANCE TO THE PARETO FRONT FOR THE 35 BUSES MODEL 
δ Balance Specific Quality 

0.25 3.30 6.37 3.30 

0.10 0.95 0.95 2.01 

0.05 6.37 6.37 6.37 

0.01 120000 120000 3.30 

IV.  HARDWARE-IN-THE-LOOP TEST CASE 

A.  Test case overview 

To illustrate the impact of different mapping strategies, an 

HIL simulation test case is presented in this paper. This 

system was developed for the Best Path DEMO#2 [20] and it 

is detailed in [21]. It consists in a three-terminal HVDC grid 

including DC circuit breakers (DCCBs), as shown in Figure 6. 

Two MMCs (Station 2 and 3) are controlled by a generic 

controller in HYPERSIM. The last converter (Station 1) is 

controlled through simulator IOs, by industrial controllers 

provided by ABB. Similarly, the DCCB models are also 

controlled by ABB control hardware. 

Figure 6  Overview of the three terminals DC grid 

The objective of this HIL set-up (Figure 7) is to assess the 

efficiency of DC grid protection algorithm as well as the 

action DCCB control into a DC grid, for different DC faults. 

Detailed results of the DCCB control can also be found in 
[21]. 
Station Control and Monitoring  Simulator Interface  

Pole Control and Protection Multiterminal Control and Protection 

Figure 7  Overview of the HIL set-up, replica provided by ABB 

B.  Task Mapping results 

The DC grid can be divided into 85 tasks. The main tasks 

can be listed by load importance as follow: 

- 3 converters stations with DC breaker, 

- Control system of 2 converters, 

- 6 DC lines (2 sections for each DC line), 

- The rest is dedicated to the IOs for control replicas 

(DC breaker and VSC control) and FPGA MMC valve 

models. 

Three scotch strategies, among them the specific one from 

III.  B.      2)  , have been tested with an imbalance ratio 

δ=0.01. The time step has been set to 30μs. The last column 

indicates the steady state execution time of the most loaded 

processor. The simulations were performed on an OP5031 

target with 32 cores (2 CPU Intel Xeon E5-2697A v4 @ 

2.60GHz - 16 cores). Only specific and balance strategies 

succeed to respect the real-time constraint. It has been 

observed that favoring CPU load balancing instead of task 

communication deals better with erroneous task time 

estimates. For the simulation, the task mapping from the 

balance strategy is kept for the DCCB validation. 
TABLE VI 

TASK MAPPING RESULT FOR EACH SCOTCH STRATEGY 

Strategy NbProc Comm Var Time 
Max RT 

ExecTime 

Quality 6 375 18.47 0.0028 31.5 

Balance 6 524 0.09 0.0029 24.0 

Specific 6 522 0.27 0.0113 24.0 

C.  Simulation Results 

The scenario consists of a permanent negative pole-to-

ground fault on the shorter DC cable. The fault event occurs at 

t=200ms in the following figures. Figure 8 shows that, during 

the transients, the 30μs time step constraint is respected in the 

three most loaded processors (each task corresponds one 

converter station, identified by one color). As results, the 

balance strategy has better performances than quality as 

observed in steady state. 

 

 
Figure 8  Execution time for converters stations during transients,  

(top: balance strategy – bottom: quality strategy) 

The last graph shows that the inter-task communications is 

negligible. This confirms that, for this case, balancing the 

processor loads is more important than minimizing the inter-

processor communication, which justifies the choice of 

balanced strategy. This conclusion may not be applicable to 

heterogeneous architectures. 

Station 1 Station 2 

Station 3 

Real-time Simulator 



 
Figure 9  Inter-processor communication time for each converter station 

Thanks to the DC grid protection implemented in the 

control cubicles, the faulty cable is isolated from the rest of 

the DC grid with DCCBs. After some transients due to the 

fault and DCCB operation, the DC voltage of each station 

returns to its operational point +/- 320kV as shown in Figure 

10. 

 
Figure 10  Negative pole voltage at each converter station terminal subjected 
to clearance of permanent DC cable fault 

V.  CONCLUSIONS 

This paper has highlighted deeply that graph partitioning 

algorithm is one of the most efficient heuristic to proceed an 

optimal solution of the task mapping problem for real-time 

EMT simulations. First, tests within an industrial tool over 

realistic networks have shown a good tradeoff in terms of 

execution time and quality of the solution. Then, the tuning of 

hyper parameters allows the engineer to increase the quality of 

solutions while respecting the time step constraint. 

Additionally, comparisons with exact methods have 

strengthened the confidence of finding almost-optimal 

solutions. Lastly, an industrial real-time Hardware-in-the-

Loop simulation has validated the use of this technique where 

balance strategy should be preferred over the quality one to 

best deal with erroneous task time estimates. 
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