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Abstract--This paper presents further details of a previously 

proposed improved fitting procedure for transmission line/cable 

propagation functions, in which low frequency samples are given 

special attention. In the proposed approach, the frequency 

bandwidth is partitioned. At the first stage the fitting is 

performed for a high frequency band by excluding frequencies 

samples close to DC. The second stage finds a correction term for 

those excluded samples. This procedure achieves improved 

accuracy for transmission lines and cables used for HVDC 

transmission. The new approach complements the prevailing 

Universal Line Model (ULM) by avoiding numerical instabilities 

due to large residue/pole ratios while delivering accurate DC 

response. Two test cases are used to demonstrate the advantages 

of the new approach. 
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I.  INTRODUCTION 

HE transient analysis of DC transmission lines has 

become of special interest with the increasing number of 

planned and installed HVDC systems [1]-[4]. The 

transmission line models for the simulation of such systems 

require covering a wide range of frequencies including those 

very close to DC. 

This paper is based on the usage of the universal line model 

(ULM) [5] approach for modeling HVDC lines. Numerical 

implementation of ULM in EMT-type programs relies on 

representing line functions, i.e., propagation function ( H ) and 

characteristic admittance ( cY ) by rational function 

approximations, i.e., partial fractions, which are provided by 

existent curve fitting techniques [6]. One practice to capture 

the DC response in the ULM is to specify a very low 

frequency for fitting H  and cY . However, this approach 

often leads to incorrect solutions for the DC steady-state 

voltages and currents due to generally poor DC fitting [7]-[8]. 

Moreover, resulting large residue/pole ratios and opposing 

signs from different modal groups in the fitting of H , may 

cause numerical stability problems in time domain simulations 

[8]-[10]. The frequency dependent cable model (FDCM) 
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presented in [11] proposes a new method for correcting cases 

with numerical problems due to large residue/pole ratios. In 

FDCM, the large ratios are avoided by decomposing the 

propagation function H  into grouped modal contributions. 

The modal contribution groups are smooth functions of 

frequency and are fitted in phase domain. However, when this 

approach is applied to aerial lines, the problem of poor fitting 

at low frequencies is even more emphasized. 

The method presented in [8], maintains a low frequency 

representation of the line model by using an additional low-

order fitting function that compensates fitting errors at low 

frequencies. But this approach still requires a large frequency 

fitting range and may cause large residue/pole ratios that can 

produce numerical instabilities in time domain computations. 

The fitting procedure of ULM can be modified [7] by 

forcing the exact DC response of H  in the rational 

approximation. However, this modification requires an 

additional optimization step of residues to reduce the acquired 

high-frequency errors. 

In [9] the fitting approach of FDCM is extended by using a 

two-stage fitting method in which low frequency samples are 

given special attention. The first stage performs fitting by 

excluding very low (close to DC) frequency samples. The 

second stage finds a correction function for the initially 

excluded samples close to DC. This approach avoids large 

residue/pole ratios occurring in the classic ULM. This 

approach is called Frequency Dependent Model with DC 

correction (FDM/DC). 

This paper provides more details on the fitting process 

presented in [9]. In addition, two new test cases are used in 

this paper to demonstrate advantages for accurately computing 

DC steady-state waveforms and preserving numerical stability. 

II.  REVIEW OF LINE/CABLE MODELING 

A.  Main Equations in Frequency Domain 

A power line/cable system of length L formed by N 

conductors is presented in Fig. 1. Based on the current 

directions in Fig. 1, the frequency domain voltages and 

currents at both ends can be related using 

 ( )= − +k c k m c mI Y V H I Y V   (1) 

 = − +m c m k c kI Y V H(I Y V )   (2) 

where kI  and mI  are the vectors of injected currents, and 

kV  and mV  correspond to nodal voltage vectors. H  and 

cY  are defined by: 

 
Le−= Γ

H   (3) 

 
1−=cY ΓZ   (4) 

T 



where =Γ YZ , with Z  and Y  corresponding to the per 

unit length series impedance and shunt admittance matrices, 

respectively. Both Z  and Y  can be numerically obtained 

from the geometry and the electrical parameters of the line. 
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Fig. 1. Multiconductor line/cable segment of length L. 

B.  Universal Line Model (ULM) 

In the ULM, H  is first diagonalized via modal 

decomposition [5]. Then, poles and delays are identified by 

fitting each mode. Modal delays have close values and are 

grouped [13]. Once the poles and delays are known, the matrix 

of residues is obtained by solving an overdetermined problem 

[5]. Thus, the propagation function H  is approximated in the 

following state space form: 
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where grN  is the number of modal propagation groups, iM  

is the order of the approximation for the ith modal group, 

,i mp  represents its mth pole, ,i mR  corresponds to the matrix 

of residues and i  is the time delay associated with the 

velocity of the ith modal group. 

The characteristic admittance cY  is approximated directly 

in phase domain by: 
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where yN  is the order of approximation, iq  represents the 

ith fitting pole, iG  is the corresponding matrix of residues, 

and 0G  is a constant matrix representing the limit of cY  

when s → . 

C.  Frequency-Dependent Cable Model (FDCM) 

Although the ULM is applicable for most line/cable 

configurations, it generates unstable models in some cases 

[11]. The origin of the problem relies on the fitting of H  and 

can be explained as follows. Equation (5) contains multiples 

delay groups and it is solved using least squares method. The 

only criterion is the minimization of the difference between 

the fitted and the actual responses. Even though H  can be 

accurately fitted by combining the multiple delay groups, the 

rational approximation of separate delay groups does not 

necessarily match the actual modal contributions. As a result, 

the solution of (5) may result with delay groups having high 

residue/pole ratios. This may lead to numerically unstable 

models in the time domain solution.  

Idempotent models also perform fitting through 

decomposition [12] but the non-smooth behavior associated 

with similar eigenvalues was overlooked. Moreover, it divides 

modal contributions into eigenvalues and idempotent matrices 

which can reduce the efficiency of models due to cascaded 

convolutions in time domain. 

The objective of the FDCM [11] is to properly account for 

modal contributions in the fitting of H . In FDCM, similar 

eigenvalues of H  and their corresponding eigenvectors are 

grouped by summing them, and a single time delay is assigned 

to the group. The modal contribution groups are smooth 

functions of frequency. Hence, the propagation function 

matrix becomes 
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where Ngr is the number of modal contribution groups. The 

fitting of the propagation function is performed on each modal 

contribution group to obtain poles and residues 

simultaneously, and consequently, the high residue/pole ratios 

appearing in the ULM are eliminated. A common set of poles 

is used for each ˆ
iH  and the exponential time delay i  

factor is removed prior to fitting to give 

 
,

,1

ˆ
iM

i m
i

i mm s p=


−


R

H   (8) 

III.  FDM/DC APPROACH 

To increase the precision in the fitting of H  at 

frequencies close to DC, a two-stage fitting method is 

proposed in [9], which is called FDM/DC. In this approach, 

the frequency band is partitioned to relax fitting, and a 

correction term is found afterward. It has been reported in 

[14]-[15] that partitioning the frequency band improves fitting 

precision. In this section, this paper reviews the fitting 

technique presented in [9] and provides additional equations to 

clarify the final step of the fitting procedure of H . 

In the FDM/DC [9], the propagation function H  is fitted 

(see Fig. 2) using the following steps.  

In the first step the frequency range is divided into low 

frequency (LF) and high frequency (HF) sections (ranges). 

Typically, the LF section is between 0.001 to 1 Hz and the HF 

section is between 1 Hz to 1 MHz. 

In the second step, the fitting of HF, is performed to obtain 

HFH  (poles and residues). The rational approximation can be 

obtained by using either the FDCM or ULM approach, to give 

 
( ),

,1 1

gr i
HF i

N M
si m

HF
HF i mi m

e
s p

−

= =

 
  

 − 
 

R
H   (9) 

where HF HFs j= . 

The third step evaluates the fitted function HFH  for the 

LF range. The resulting error of fitting LFH  is given by 

 ( )LF LF HF LF LF LFs = − = −H H H H H   (10) 

where LF LFs j= , and LFH and LFH  are respectively the 

analytical and fitted propagation function at low frequencies. 

The fourth step calculates the rational approximation 

LFH  for LFH . In the LF range, the propagation function 

behaves flat and the impact of time delay is negligible; thus, 



an arbitrary time delay can be removed prior to fitting. In [9], 

it is proposed to use the delay associated to the first modal 

group, i.e. 1 , (labelled as delay 1 assuming that delays are 

sorted). Then, LFH is computed as follows 
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where DCM  is the order of approximation, and DCR  and 

DCp  are respectively the residues and poles obtained at the 

LF section, i.e. the DC correction terms. 

The fifth step obtains the final rational approximation by 

combining the fitted functions given by (9) and (11): 

 HF LF + H H H   (12) 

In this step, the DC correction terms in (11) are added to 

the first group in (9). Thus, the first modal group 1H  is now 

obtained as 
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and the final propagation function is given by  
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Fig. 2. Illustration of the FDM/DC approach for one entry of H, i.e. H. 

 

The approach detailed above allows achieving more 

accurate fitting at low frequencies. In addition, partitioning 

and reduced frequency ranges help avoiding pairs with large 

residue pole ratios and consequently avoiding numerical 

instabilities that may occur in the classic implementation of 

ULM, regardless the integration method. 

IV.  NUMERICAL EXAMPLES 

This section verifies the FDM/DC approach proposed in [9] 

through two new cases of study by showing details in both DC 

fitting and time-domain results. The impact of improving the 

fitting of H at low frequencies in time-domain simulations is 

analyzed via transient studies.  

A.  AC and DC Lines in Parallel 

This example considers the 220-km AC and DC 

transmission lines running in parallel with 80 m separation 

from each other, see Fig. 3. For this line, H  is fitted with the 

FDM/DC method and with the ULM approach. Table I shows 

the corresponding fitting data considering 20 samples per 

decade and a convergence tolerance of 0.0001 in the fitting 

process. In the first stage of the FDM/DC, H  is fitted from 1 

Hz to either 105 or 106 Hz. Then, the error at the LF section is 

fitted using 8 poles from 0.001 Hz to 1 Hz. It is mentioned that 

fitting up to 106 Hz gives results very similar to the one up to 

105 Hz, even with a smaller residue/pole ratio (see Table I). 

The approximation of LFH  is shown in Fig. 4. It is 

observed that deviations of magnitudes are acceptable. The 

magnitudes of the final approximation for the elements of the 

first column of H  for the entire frequency range are shown 

in Fig. 5. It is observed that all the elements are accurately 

fitted. In ULM, the fitting of H  is performed in a single 

range of frequencies using four different ranges of frequency 

(see Table I). It is noticed in Table I that a very large 

residue/pole ratio results when the frequency range is 

increased to 8 decades in the ULM, i.e. from 0.001 Hz to 105 

Hz, and from 0.01 to 106 Hz. Moreover, more poles are 

required with ULM compared to the FDM/DC technique. 
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Fig. 3. AC/DC lines geometry. 

 

TABLE I 
FITTING DATA OF THE SYSTEM OF FIG. 3 

Model 
Fmin 

(Hz) 

Fmax 

(Hz) 

No. poles 

(4 groups) 

Maximum 

residue/pole ratio 

FDM/DC 
0.001 105 32 25.23 

0.001 106 32 1.46 

ULM 

0.100 105 34 5.17 

0.010 105 37 3.85 

0.001 105 80 426226.24 

0.010 106 100 1633120.74 

 

 
Fig. 4. Low-frequency approximation of function error for LFH . 

 
Fig. 5. Magnitude of the first column of H . Solid line corresponds to actual 

values while dash lines corresponds to fitted values with FDM/DC. 



The two circuit configurations of Fig. 6 are used to test the 

system of Fig. 3. In the first test (Fig. 6a), a unit step current, 

with a ramping time of 0.5 s, is applied to the sending end of 

the positive conductor of the DC line, while the other 

conductors are grounded. Fig. 7 shows the induced voltage at 

the receiving end of C2 considering four cases listed in Table 

I. It is observed that the FDM/DC provides a stable and 

precise time-domain solution. On the other hand, two ULM 

cases deviate from the correct response, i.e., cases using 

minimum frequency values of 0.1 and 0.001 Hz. The 

computation of accurate DC response requires inclusion of 

very low frequencies in the fitting of H ; thus, fitting from 

0.1 Hz is not enough. However, reducing the frequency range 

to 0.001 Hz results in large residue/pole ratios (see Table I), 

leading to an unstable solution as shown in Fig. 7. This 

problem is avoided in ULM by setting the minimum frequency 

for the fitting to 0.01 Hz. In this case, the time-domain 

response becomes stable and agrees with the solution obtained 

by the FDM/DC (Fig. 7). However, the ULM requires five 

poles more than FDM/DC in the fitting of H  (see Table I). 

Note that the maximum frequency must be adjusted in ULM 

to provide accurate DC response. Such frequency is not 

known beforehand and implies a trial-and-error procedure for 

the common ULM user. On the contrary, the FDM/DC works 

well with either 105 Hz or 106 Hz as maximum fitting 

frequency. 
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Fig. 6. (a) short- and (b) open-circuit configuration for testing the AC/DC 
transmission line. 

 

 
Fig. 7. Time domain results of V2 in Fig. 6a. 

To analyze the performance of the proposed FDM/DC 

method in a fast front transient, the open-circuit configuration 

of Fig. 6b is tested. In this second test, a step function is 

applied to the positive conductor (C5) at the sending end while 

the receiving end is open. Conductors C1-C4 are left open at 

both ends. Fig. 8 shows the time-domain results of the induced 

voltage at the receiving end of C4, i.e. 4V . The minimum 

frequency for the fitting in FDM/DC and ULM is set to 0.001 

Hz and 0.01 Hz, respectively. It is observed that FDM/DC 

provides accurate and stable solution regardless Fmax, which 

confirms that the higher frequencies are also accurately 

simulated. It is noticed that ULM becomes unstable when the 

frequency range is extended to 1 MHz. The instability 

problem is due to the resulting very large residue/pole ratio in 

the fitting of H  (Table I). 

 
Fig. 8. Time domain results of V4 in Fig. 6b, time-step 1 µs. 

B.  Underground Cable System 

This example aims at verifying the precision of FDM/DC 

and ULM models for computing DC steady-state waveforms 

in the time-domain simulation of cables. Consider the 4-

conductor cable system of Fig. 9 with parameters listed in 

Table II. For this cable system, H  is fitted with the 

FDM/DC and ULM approaches. Table III shows the 

corresponding fitting data. In FDM/DC, the frequency range is 

partitioned at 1 Hz. In ULM, the identification of H  is 

performed in a single frequency range considering three 

different minimum frequency values. It is observed that a less 

accurate fitting is obtained in ULM when the frequency band 

used in the fitting is reduced to 0.1 Hz. It is also observed in 

Table III that when the minimum frequency for the fitting is 

set to 0.001 Hz, the fitting error (maximum absolute error for 

the fitting of H ) obtained in ULM is slightly smaller that the 

one obtained with the FDM/DC; however, ULM requires three 

more poles. Moreover, the entries of H  identified in ULM 

are not accurately fitted at low frequencies. Fig. 10 show the 

magnitude of two entries of H  fitted with FDM/DC and 

ULM approaches. It is seen that FDM/DC provides accurate 

fitting, while the entries fitted with ULM show oscillations. 

0.4 m

1 m

 
Fig. 9. 4-conductor cable system. 
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TABLE II 
CABLE DATA FOR THE SYSTEM OF FIG. 9 

Inner-Outer Radius of the Core 00.00-33.00 mm 

Inner-Outer Radius of the Sheath 66.00-66.44 mm 

Outer Insulation Radius 76.00 mm 

Resistivity of Sheath 1.72×10-8 Ohm-m 

Resistivity of Core 1.72×10-8 Ohm-m 

Core Insulator Relative Permittivity 4.10 

Shield Insulator Relative Permittivity 2.30 

Insulation Loss Factor 0.001 

Earth Resistivity 100 Ohm-m 

 
TABLE III 

FITTING DATA OF THE SYSTEM OF FIG. 9 

Model 
Fmin 

(Hz) 

Fmax 

(Hz) 

No. poles 

(3 groups) 

Max. absolute 

error for fitting H 

FDM/DC 0.001 105 36 0.0044463 

ULM 

0.001 

105 

39 0.0037779 

0.010 45 0.0088199 

0.100 60 0.0113090 

 

 
(a) 

 
(b) 

Fig. 10. Magnitude of (a) (1,1)H  and (b) (4,1)H  fitted with FDM/DC and 

ULM approaches. 

 

To see the impact of fitting precision at low frequencies in 

time domain simulations, especially for induced voltages, the 

test circuit of Fig. 11 is considered. A unit step voltage is 

applied to the sending end of the first core, while the sheaths 

are left open at both ends. For this test, the system of Fig. 9 is 

modeled with the approaches listed in Table III. Fig. 12 and 

Fig. 13 show the time-domain voltage 1V  and 4V  (see Fig. 

11), respectively. It is observed that there are no significant 

differences between the responses obtained with FDM/DC and 

ULM approaches in 1V , see Fig. 12. However, significant 

deviations can be observed in the induced sheath voltage 4V  

shown in Fig. 13. The FDM/DC provides a steady-state 

waveform, while the three responses obtained with ULM show 

oscillations. It is mentioned that similar results are obtained 

when the fitting frequency range is increased. Fig. 14 shows 

the time domain voltage 4V  when the maximum frequency 

for the fitting is set to 106 Hz. 

Vs

V4

Cable 44 km

V1

 
Fig. 11. Test circuit configuration. 

 

 
Fig. 12. Time domain results of V1 in Fig. 11. Fmax = 105 Hz. 
 

 
Fig. 13. Time domain results of V4 in Fig. 11. Fmax = 105 Hz. 

 

 
Fig. 14. Time domain results of V4 in Fig. 11. Fmax = 106 Hz. 

V.  CONCLUSIONS 

This paper presents further details of a recently proposed 

enhanced fitting procedure for the identification of the 

propagation function in transmission lines and cables, aimed 

to reduce the fitting errors at low frequencies. The fitting is 

performed in a two-stage fashion ensuring precise fitting 

primarily at frequencies near DC. This approach complements 

the prevailing universal line model by avoiding numerical 

instabilities due to large residue/pole ratios, and by improving 

the accuracy in the computation of DC steady-state 

waveforms. The accuracy of the new approach is 

demonstrated via two new test cases. 
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