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Abstract—In transient power system simulations both high
accuracy and elimination of numerical oscillations caused by
the integration method are required. Power system engineers,
who often are the end users of simulation tools, are not always
aware of the latter. In this paper an algorithm which yields
optimum accuracy for the nominal frequency of a power system
while avoiding numerical oscillations will be presented. This
is achieved by pre-warping a damped Trapezoidal rule and
appropriately adapting the damping factor of the numerical
integrator individually for each element. In particular, but not
only, steady-state signals are depicted very accurately, which is
essential for applications in the area of power system protection.
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I. INTRODUCTION

IN EMTP and other transient power system simulation
software, Trapezoidal integration with a constant time step

∆t has been used successfully for years. To avoid numerical
oscillations, the critical damping adjustment (CDA) scheme
is often used [1], [2], which switches the integration method
to backwards Euler for two time steps of size ∆t

2 at every
discontinuity, such as switching or fault events. However, it
is not possible to completely eliminate numerical oscillations
by using CDA, so that careful modelling of the simulated
topology is still necessitated.
While power system engineers, who use power system
simulation tools in their daily work (e.g. for testing power
system protection) should ideally be aware of the problems,
one of the authors’ experience in industry has lead to
the conclusion that, unfortunately, this is not always the
case. Hence appropriate steps (e.g. the inclusion of damping
resistors) are often not taken. Therefore, an algorithm which
automatically eliminates even more numerical oscillations is
to be preferred.
On the other hand, for applications within power system
protection, very accurate transient simulations are required.
Protection relays measure voltages and currents to detect faulty
conditions in the network, where even small deviations in
amplitude and phase are evaluated (e.g. within differential
protection elements). Any inaccuracies in the test signals can
lead to unexpected behaviour of protection relays under test
or cause deviations of measurements done with steady-state
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tests (e.g. exact reaches of distance zones). Power system
simulation tools used for protection testing should therefore
yield very accurate results particularly for signals at the power
system’s nominal frequency.
In this paper, a modified damped Trapezoidal rule will
be presented. First, for non-ideal inductive and capacitive
elements, the accuracy will be increased greatly by correcting
the impedance for signals at the nominal frequency. Second,
for each individual element, we will choose an appropriate
damping factor in order to both accurately depict transient
processes and reduce numerical oscillatory effects.
Finally, a novel algorithm to optimize accuracy while
eliminating most numerical oscillations will be proposed and
compared to standard Trapezoidal integration.

II. NUMERICAL MODELLING

In EMTP and similar programs, it is necessary to transform
continuous integrals into discrete-time approximations, usually
using some form of damped Trapezoidal rule [1], [3]∫ t+∆t

t

f(x)dx ≈ ∆t · f(t+ ∆t) + β · f(t)

α
, (1)

where 0 ≤ β ≤ 1 and α = 1 + β. In particular, for β = 0,
we have the Euler backwards method, whereas for β = 1,
we have the Trapezoidal rule. As will become clear from the
estimate for the time constant deviation (19) below, it will be
useful to adjust the damping not directly using α and β, but
instead we will use a third parameter Ω := 1+β

1−β , which can
take values between 1 and +∞, where Ω = 1 corresponds to
Euler backwards and Ω = +∞ to the Trapezoidal rule.
It is well known [1], [4] that the Trapezoidal rule yields more
accurate results than the Euler backwards method, but is much
more vulnerable to numerical oscillations.
For modelling the current through a non-ideal inductance (an
inductance in series with a resistor), transformation of the
equation

v(t) = R · i(t) + L · ∂i
∂t

(t) (2)

into the z-domain (see e.g. [4], [5], [6]) yields the transfer
function

V (z)

I(z)
= R+ L · s, (3)

where
s =

1

∆t
· α · z − 1

z + β
. (4)

While such a transformation is necessary to the numerical
simulation, it also introduces a phase shift which is caused



by the approximation of the differential operator s. While,
ideally, we would have [5] z = es∆t, our approximation is

z =
α+ βs∆t

α− s∆t
. (5)

Assuming
∣∣∆t
α s
∣∣ < 1, this leads to the series expansion

z = 1 + ∆ts+
1

α
(∆ts)2 + · · · , (6)

which, compared to

es∆t = 1 + ∆ts+
1

2
(∆ts)2 + · · · , (7)

results in an error of
(

1
α −

1
2

)
· (∆ts)2 + O

(
(∆ts)3

)
.

In particular, we have a second-order error only for the
Trapezoidal rule.
However, for linear elements, we can avoid this by pre-warping
the z-transformation to the correct impedance [8]. For an
RL-element, this means we introduce correcting factors
kR, kL ∈ R such that, given ω = 2πf and z = ej∆tω ,

R+ jLω = kRR+ kLLs. (8)

Note that, for the Trapezoidal rule, we have kR = 1 and kL =
ω∆t

2

tan ω∆t
2

, which is the inverse of the error already mentioned
in [3].
Direct calculation of these factors leads to, substituting ξ :=
1−e−jω∆t

1+βe−jω∆t ,

kL =
ω∆t

α
· (Im(ξ))

−1
, (9)

kR = 1− kL ·
L

R
· α

∆t
Re(ξ). (10)

Using this impedance correction, the simulation accuracy can
be greatly increased. Due to the duality of inductance and
capacitance, the same considerations apply for the latter. It
is especially noteworthy that, for steady state calculations,
there is no notable difference in accuracy between the Euler
backwards method and the Trapezoidal rule anymore. This
can be seen for different impedance angles and sampling
frequencies in Table I. While for the non-corrected versions,
quadratic and linear convergence rates for Trapezoidal rule
and Euler backwards are evident as well as their slower
convergence for high angles, these differences are negligible
for the impedance-corrected versions.
While the above kind of impedance correction is very
useful for eliminating both magnitude and phase shift in a
steady-state solution, it can be somewhat problematic for
transient processes. The two correcting factors kR, kL are used
to warp both the resistance and conductivity of the element in
order to gain the correct frequency response, however, this
results in a shift in the time constant τ := L

R .
For transient simulations, it is therefore necessary to
investigate if, and if so, when this shift in time constant can
turn out to be problematic.

Trapezoidal Euler

1 kHz 3.59E-04 3.82E-03

1◦ 10 kHz 2.03E-06 3.88E-04

100 kHz 2.03E-08 3.88E-05

1 kHz 2.27E-02 2.80E-01

89.99◦ 10 kHz 2.33E-04 2.28E-02

100 kHz 2.33E-06 2.22E-03

(a) without impedance correction

Trapezoidal Euler

1 kHz 6.62E-15 6.68E-15

1◦ 10 kHz 7.68E-15 8.35E-15

100 kHz 7.70E-15 7.99E-15

1 kHz 8.08E-15 4.83E-14

89.99◦ 10 kHz 7.46E-15 1.23E-14

100 kHz 4.42E-14 2.07E-14

(b) using impedance correction

TABLE I: Relative error to theoretical solution for the current
through an inductor with either very high or low impedance
angle, for an AC Voltage source with f = 50Hz and different
sampling frequencies, using the Trapezoidal rule and Euler
backwards method. The first column shows the impedance
angle, the second the sampling frequency.

A. Time constant considerations

In order to estimate the error caused by the shift in time
constant, it will prove to be useful to look at the relative error

∆τ :=

∣∣∣∣ τ̂ − ττ
∣∣∣∣ =

∣∣∣∣1− kL
kR

∣∣∣∣ , (11)

where τ = L
R , τ̂ = kL·L

kR·R .
A first-order approximation with respect to ω∆t of the
correcting factors is given by

kL ≈ 1, (12)

kR ≈ 1− Lω

R
· ω∆t

2
· 1

Ω
. (13)

Seeing as ∆t can in practical applications be chosen to be
fairly small, the accuracy of these approximations will in the
following assumed to be decently good.
It follows from (12)-(13) that, while kL is not an issue, it is
advisable to choose Ω as large as possible, in order to keep
kR as close to 1 as possible.
Since most transient processes are closely linked to
exponential functions of the form e−t/τ , in many cases the
error resulting from the shift in time constant can be estimated
by the difference ∣∣∣e−t/τ − e−t/τ̂ ∣∣∣ . (14)

As ∣∣∣e−t/τ − e−t/τ̂ ∣∣∣ =

∣∣∣∣e−t/τ − (e−t/τ)τ/τ̂ ∣∣∣∣ , (15)



substituting Z := e−t/τ , x := Lω
R ·

ω∆t
2 ·

1
Ω and ρ := τ/τ̂ ≈

1− x transforms this to

|Z − Zρ| , (16)

which has a maximum value of roughly (second-order
approximation with respect to x)

1

e
·
(
x− x2

2

)
(17)

In particular, this means that, in order to reduce the error in
transient processes, it is sufficient to reduce the value of x.
Seeing as, by (12)-(13) and for small x, we have

∆τ =

∣∣∣∣1− kL
kR

∣∣∣∣ ≈ ∣∣∣∣1− 1

1− x

∣∣∣∣ ≈ |1− (1 + x)| = x, (18)

this is equivalent to the intuitive solution of keeping the
time constant shift as small as possible. Looking back at our
definition of x, without changing the time step size, the only
- but fortunately a rather simple - way to achieve this is by
increasing Ω. Given any ε > 0 and otherwise fixed system
parameters, we can give an estimate for a minimal Ω such
that ∆τ < ε by

Ωε =
Lω

R
· ω∆t

2
· 1

ε
. (19)

This shows that, considering only the time constant shift, we
would like Ω to be as large as possible. As, for small Ω and
large impedance angles, it is entirely possible for the time
constant to take negative values after impedance correction,
it will turn out to be essential that such a bound for ∆τ is
introduced and Ω is then chosen at least as big as in (19).

B. Oscillatory behaviour

While the Trapezoidal rule has great properties in terms of
stability and accuracy, it is prone to suffer from oscillations
[3], [10], [5]. Two of the most common solutions to this are the
Critical Damping Adjustment (CDA), consisting of a change
to the Euler backwards method for a short time after an event,
and the use of a damped Trapezoidal rule as in (1) [1], [7].
The latter is, for ideal elements, the mathematical equivalent
to including a physical damping resistor [3]. For non-ideal
elements, while this simple physical interpretation is not easily
applicable anymore, using a dampened Trapezoidal rule is still
an excellent tool to reduce oscillations without great losses in
terms of accuracy. There are, of course, other options as well,
such as using a higher order numerical integration method, as
in [11], but these shall not be discussed here.
When calculating the current through an RL branch, the
corresponding differential equation

v(t) = R · i(t) + L · ∂i∂t (t) (20)

⇒ i(t+ ∆t) = i(t) +
∫ t+∆t

t
v(x)−R · i(x) dx (21)

leads to recursions of the form

i(t+ ∆t) = A1 · i(t) +B1 · v(t) + C1 · v(t+ ∆t), (22)
v(t+ ∆t) = A2 · v(t) +B2 · i(t) + C2 · i(t+ ∆t). (23)

For oscillatory behaviour in case of a sudden drop in voltage
or current, the important terms in the above equations are
A1,2, in particular, numerical oscillations will occur if one of
these terms is negative [1], [10]. Substituting the dampened
Trapezoidal rule, we arrive at

A1 =
αL− βR∆t

αL+R∆t
, (24)

A2 = −β. (25)

From this we can conclude that, firstly, calculating the current
through an RL element will not be problematic provided that
R∆t < L. If this were not the case, it would translate
to a very small impedance angle, which is not relevant for
most practical applications. If one wanted to still implement
a safeguard for this case, it would be possible to substitute
α, β by 2Ω

Ω+1 ,
Ω−1
Ω+1 and then calculate a maximum Ω such that

A1 ≥ 0. The time-constant shift caused by such an upper
bound for Ω can be shown to be less than

(
ω∆t

2

)2
, and is

negligible. However, as the modelled inductances tend to have
rather high impedance angles, this shall not be discussed in
detail here.
The second conclusion we can draw from (24)-(25) is that,
for calculating the voltage across an RL branch, the only
way to rule out numerical oscillations is by using the Euler
backwards method, otherwise we have oscillations decaying
with βn, where n is the number of samples after the event.
Therefore, in order to reduce oscillations, we would very much
like to keep our Ω as small as possible.

C. Proposed Algorithms

From the last two sections, we have two conflicting
requirements for our Ω - firstly, it should be large enough
that the time constant shift ∆τ does not matter too much,
and secondly, it should be rather small such that numerical
oscillations can be eliminated. It is also obvious that the exact
requirements for Ω differ from element to element, depending
on the material parameters. Therefore, it would be ideal
to use different integration methods for different elements.
By substitution into the corresponding matrices in [3] and
some rearranging, it can be shown that, if each element is
properly approximated by the corresponding method, then, for
uncoupled elements, this is indeed possible. It may be worth
pointing out that something similar is already implemented in
ATP, where one can select a damping value Kp for different
elements separately [9], [10]. However, this reasoning cannot
be immediately adopted, seeing as in ATP, the same process
is explained not by selecting a different integration method,
but by choosing an element with slightly altered physical
parameters (that is, the additional damping resistor).
In order to give an algorithm and choose an appropriate Ω for
each element, the one thing that seems to be mandatory is to
implement a lower bound Ωmin for Ω, restricting ∆τ as in
(19). The condition Ω ≥ Ωmin ensures that ∆τ ≤ ε. .
The first algorithm aims to keep Ω as large as possible, so as
to achieve great transient accuracy. The resultant oscillations
can then be reduced using some other method, for instance
the previously mentioned CDA. We will still not allow for



Ω =∞, however, so that randomly occurring numerical errors
do not propagate and are reduced within a reasonable time, and
instead aim to set Ω to 500. Taking into account the above, this
is only admissible if Ωmin ≤ 500. Hence, the first algorithm
looks as follows:
Algorithm I:

1) Select a maximum allowed ∆τ , and calculate the
corresponding Ωmin.

2) If (Ωmin ≤ 500), then Ω = 500.
3) Else Ω = Ωmin.

The second algorithm is supposed to eliminate oscillations as
much as possible. It will select the minimum Ω such that the
time constant constraints are not broken:
Algorithm II:

1) Select a maximum allowed ∆τ , and calculate the
corresponding Ωmin.

2) Ω = Ωmin.

III. SIMULATION RESULTS

Fig. 1: Testing circuit. The first switch CH6 is closed at t =
0.005s, while the second simulates a fault event at t = 0.05s.

The algorithms were tested for an RLC-circuit as illustrated
in Fig. 1, with impedance angles for the capacities set to 85◦.
They were compared with the normal Trapezoidal rule, as well
as a constant Ω of 5.4 and 9.8, which is roughly equivalent
to the upper and lower bound of damping suggested in [3].
The images shown correspond to the voltage and current
that would be measured by the protection relays that is, the
voltage potential to the left of CH6 and the current across,
but also present a good representation of the behaviour of
other branch currents/voltages.
The frequency f was chosen to be 60 Hz, ∆t = 10−4s.
To serve as a reference, the simulation was also done
using a Trapezoidal rule, with ∆t = 10−6s, using CDA.
The maximum allowed time constant deviation was set to
∆τ = 0.01.

As can be seen in Fig. 2 (for algorithms I, II) and Fig. 3
(for Ω = 5.4, 9.8), the transients are in general depicted
more accurately by the proposed algorithms I and II than
by a normal damped Trapezoidal rule with Ω = 5.4, 9.8,
the sole exception being the second switching event (after
t = 0.05) for algorithm II. This is, in the authors’ opinions,
easily compensated for by the more precise results for the
first transient (t = 0.005 until t = 0.05). As expected, there
is a slight loss in the second algorithm compared to the pure

Fig. 2: Voltage as measured by protection relays, using
proposed algorithms.

Fig. 3: Voltage as measured by protection relays, using a
damped Trapezoidal rule.

Trapezoidal rule or the proposed first algorithm, all of which is
to be expected due to its higher emphasis on damping. To see
whether the resulting reduction of oscillation can offset this
disadvantage, we will next consider the current as measured
by the protection relays, which is naturally prone to oscillatory
effects.

Fig. 4: Current as measured by protection relays.

In Fig. 4 we can observe numerical oscillations typical of the
Trapezoidal rule. As before, the transient accuracy increases
with Ω. On the other hand, we can now see how the choice



Fig. 5: Current as measured by protection relays, calculated
using a damped Trapezoidal rule with Ω = 5.4, 9.8.

Fig. 6: Current as measured by protection relays, calculated
using the proposed algorithms.

of Ω is reflected in how the different algorithms handle
oscillations.
For fixed Ω of 5.4, 9.8 we have an almost complete reduction
of visible oscillations before the first minimum, though this
comes with a notable loss in accuracy, as depicted in Fig. 5.
For the second algorithm, while the numerical oscillations are
still visible at the beginning, they seem to disappear within
roughly a period, while still retaining much better accuracy
than the previous versions, as can be seen in Fig. 6. For the
first algorithm, the oscillations are only marginally reduced
over the whole duration.
It must be noted, however, that for fault events of this kind,
numerical oscillations could also be avoided using CDA or a
similar technique [6],[10], leading to an image as in Fig. 7. In
this case, the main problems of the first algorithm are avoided,
leading, compared to the others, to a more accurate result.
If the impedance angles are selected sufficiently high such
that (19) leads to an extremely large Ωmin, the damping
of the proposed algorithms will be reduced accordingly, as
dictated by our requirement to the time constant shift, i.e.,
to the transient accuracy. Fig. 8 shows the almost non-existent
damping properties of the second algorithm at ∆t = 10−4s for
impedance angles of 89◦. It should be pointed out that, while
the proposed algorithm’s issue are oscillations, a fixed Ω of
5.4 or 9.8 would lead to a negative time constant and therefore
nonsensical transient behaviour, illustrating that, when using
impedance correction, time constant considerations are in no

Fig. 7: Current as measured by protection relays, calculated
using the proposed algorithms and CDA.

Fig. 8: Current as measured by protection relays, calculated
using algorithm II and higher impedance angles.

way optional but rather a necessity. (19) implies that this
problem can be remedied by choosing a smaller ∆t is chosen
smaller, as this leads to a decrease of the corresponding Ωmin.
This is illustrated in Fig. 9, where ∆t = 10−6, allowing even
for Ω = 1, that is, we can use the Euler backwards method for
our calculations while remaining in the bounds given for ∆τ .
If we selected ∆t even smaller, this would lead to an increase
in accuracy while still retaining our damping properties.

IV. DISCUSSION

As was seen in the previous sections, the damped Trapezoidal
rule with impedance correction implemented as above yields
a notable increase in accuracy especially for steady-state
solutions, while still being similarly, if not somewhat more
accurate as previously used methods for transient simulations.
Some of this accuracy can be sacrificed to gain improved
damping properties, greatly reducing numerical oscillations in
many cases without use of a higher-order integration method
or introduction of an artificial damping resistance. This may
be of particular interest in cases where measures such as
CDA are not entirely effective, e.g. if there are nonlinear
elements causing discontinuities which, depending on the
exact implementation, may not always trigger additional
damping mechanisms. However, there are some other points
that also need to be addressed.
Firstly, the test results shown were given for single-phase
elements. The algorithm can be used for three-phase or



Fig. 9: Current as measured by protection relays, calculated
using algorithm II and higher impedance angles, ∆t = 10−6s.

coupled elements as well, but it is important to note that, for
any coupled elements, the integration method must stay the
same. This means that the parameter Ω needs to be chosen for
all elements together, and should be sufficiently large that the
time constant shift is within the allowed range for each single
element. In tests, the simplistic solution of calculating Ωmin
for each element of the circuit, and selecting the maximum
out of those yielded satisfactory results. This method would,
however, still be worth examining in more detail, as it seems
likely that improvements are still possible.
Secondly, the algorithm, while very efficient, is also subject
to some limitations. The main reason for the increase in
accuracy lies in the impedance correction, which eliminates
the error naturally occurring by using the Trapezoidal rule.
It is therefore necessary that the frequency of the network
be known, else this phase shift cannot be properly corrected.
In particular, this means that the algorithm may suffer
from losses in accuracy for DC sources (which are of
little importance to most end users of AC power system
protection), but also for nonlinear elements, which introduce
signal components with different frequencies. Seeing as there
is not one chosen integration method that is used globally,
but (uncoupled) elements can be integrated differently, this
can sometimes be remedied.
It should also be noted that this algorithm does not allow
for ideal inductances and capacitors, because (8) is generally
not solvable for R = 0. However, in reality, there is no such
thing as a lossless conductivity, and the method has shown to
be very effective up to very high impedance angles.
Lastly, it should be mentioned that the proposed algorithms
are obviously not the only sensible choices to select the
parameter Ω for a single element. It would, for instance,
be possible to directly select Ω such that the exponential in
(7) coincides with (5) in many cases, leading to an almost
exact solution for the transient of at least a single element,
but sometimes causing a greater shift in time constant. Such
considerations may need to be addressed in future research.
Also, the choice of 1% as maximum allowed time constant
deviation may still be improved upon. In some cases, this
could potentially be done by an a-priori estimate of the
relative error if ∆τ is known, using approximations such as,
for instance, but not limited to (17).

V. CONCLUSIONS

A numerical integration algorithm that is compatible with
EMTP-like methods was presented in this paper. It is based on
a damped Trapezoidal rule, but also uses impedance correction
in order to improve its performance at the presumed to be
known nominal frequency of a network, which makes it
particularly relevant for e.g. power system protection. The
resulting deviation of time constant was discussed and a way
to keep it below a certain threshold was given. Also, different
integration methods (that is, with different damping) were
used for separate elements, leading to more flexibility when
addressing issues such as transient accuracy and numerical
oscillations. Results in simulations as well as in applications
in industrial settings by one of the author’s company have
consistently shown an increase in accuracy compared to the
normal Trapezoidal rule. The major downside of this method
seems to be its dependence on the nominal frequency.
Future work on this method may include discussing an
implementation for three-phase coupled elements, which in
turn entails a more complicated search for an ideal damping
parameter for each element. A suitable choice of the latter
might also be applied to a normal damped Trapezoidal rule,
where instead of the time constant shift the error in the
approximation of the exponential in the frequency space as
in (5)-(7) may be minimized.
The relevance of this method can also be seen in its future
application in industrial software focusing on power system
protection, where more practical results in different testing
scenarios will be observed and may be presented in future
papers.
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