
 

Abstract—The waveform of lightning-induced overvoltages in 
overhead lines is significantly affected by the ground conductivity, 
due to the influence that ground losses have on the lightning-
originated electromagnetic field. The rigorous evaluation of the 
lightning electromagnetic field for the case of a lossy ground can be 
accomplished by solving the Sommerfeld integrals, which 
generally require very demanding computational resources. The 
paper proposes a method for the efficient evaluation of the 
Sommerfeld integral that uses a trapezoidal scheme in which the 
nodes are equidistant in logarithmic scale. The method has been 
included in the LIOV-EMTP code for allowing the accurate 
calculation of lightning induced voltages on overhead lines above a 
lossy ground. The effects of the finite conductivity of the ground on 
the lightning induced overvoltages waveforms are discussed. In 
particular, the results from the proposed method are compared 
with those obtained by using the Cooray-Rubinstein formula, 
which is an established approximation. Further, the peak-
amplitude probability-distribution of the induced voltages 
obtained by using the two approaches is presented. It is found that 
the accurate calculation is needed only for lines with a high 
insulation level and above a poor conducting ground. 
 

Index Terms—Cooray-Rubinstein formula, power distribution 
lines, lightning induced overvoltages, Monte Carlo method, 
Sommerfeld integrals.1  

I. INTRODUCTION 

HE accurate assessment of the response of distribution 
networks against a lightning electromagnetic pulse 

(LEMP) requires models of a certain complexity, as they must 
allow for the proper representation of real power distribution 
systems and of the electromagnetic environment. The 
statistical assessment of the lightning performance of such 
complex systems can be carried out by the application of the 
Monte Carlo method [1] in which a great number of time 
domain simulations is required.  

In order to reduce the computational burden, one of the 
most common assumptions is the use of approximated 
formulas for the calculation of the LEMP in presence of lossy 
ground.  

While the vertical component of the electric field and the 
azimuthal component of the magnetic field are slightly 
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affected by the ground conductivity, the horizontal component 
of the electric field is significantly influenced by the presence 
of a lossy ground [2]. 

The rigorous calculation of the electromagnetic field 
radiated by a vertical antenna over a lossy ground needs the 
solution of the so-called Sommerfeld integrals [3]. A method 
for the numerical evaluation of the electromagnetic field has 
been proposed in [4] and it is used in [5] to assess the 
accuracy of the Cooray-Rubinstein (CR) formula [2], [6], [7], 
which is an established approximated approach for the 
evaluation of the effect of finite ground conductivity on the 
radial component of the return stroke electric field. In [5], the 
comparison is limited to electromagnetic field waveforms,  i.e. 
no  analysis is presented concerning the induced overvoltages.  

This paper proposes a method for the evaluation of the 
radial electric field based on the numerical solution of the 
Sommerfeld integral. To handle the oscillatory and rapidly 
decaying behavior of the integrand function, the numerical 
solution is performed by using a trapezoidal scheme in which 
the nodes are equidistant in logarithmic scale.  

The proposed procedure has been included in the LIOV–
EMTP-RV code [8], [9], which allows the calculation of 
lightning induced overvoltages on power lines by 
implementing a finite-difference time-domain (FDTD) 
solution method of the Agrawal et al. [10] field-to-
multiconductor line coupling model. This has enabled us to 
compare the induced overvoltages calculated by using the 
proposed solution of the Sommerfeld integral and those 
obtained by using the CR formula for different positions along 
the line and different ground conductivity values. The 
comparison with the FEM model described in [11] is also 
provided. 

To check the validity of the CR formula from a statistical 
perspective, the same comparison has been accomplished 
concerning the indirect lightning performance of an overhead 
distribution line calculated by using the rigorous solution and 
the approximated one. The results are presented for different 
ground conductivity values. The procedure for the lightning 
performance appraisal is based on a Monte Carlo method that 
includes the possibility to use the Heidler function for 
representing the waveform of the lightning current at the 
channel base [12]. 

The structure of the paper is the following. Section II 
describes the calculation method, with particular reference to 
the numerical evaluation of the Sommerfeld integral and the 
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relevant inverse Fourier transform. Section III illustrates the 
time domain waveforms of horizontal electric fields and 
induced overvoltages calculated by using the numerical 
solution of the Sommerfeld integral and the CR formula. 
Section IV is devoted to the comparisons between the 
statistical assessments of the indirect lightning performance of 
an overhead line obtained by using the two approaches. 
Section V concludes the paper. 

II. CALCULATION METHOD 

The rigorous formulation of the electromagnetic field 
radiated by an oscillating Hertzian dipole over a finite 
conductivity ground is due to Sommerfeld [3].  

For the calculation of lightning-induced overvoltages 
according to the Agrawal model, the component of the electric 
field along the line direction at different distances r from the 
channel is needed.  

The radial electric field at a point distant r from the 
channel, at height z above the ground, can be seen as the sum 
of two components: 

 , ,( , , ) ( , , ) ( , , )r r p rE r z j E r z j E r z j      (1) 

where Er,p is the radial electric field in case of perfectly 
conducting ground and Er,σ is the component that accounts for 
the finite conductivity of the ground σg. 

By assuming an infinitely long straight lightning channel, 
the lossy ground contribution Er,σ to the radial electric field is 
given by [13] 
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where ω is the angular frequency, j the imaginary unit, I(jω) is 
the channel base current, J1 denotes the Bessel function of the 
first kind of order one,  
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where v is the return stroke speed, α is the return stroke model 
attenuation constant which is infinite in case of TL model.  

The integrand in (2) decays exponentially as λ goes to 
infinite. Quadrature formulas are obtained by variable 
transformations that allow the application of the trapezoidal 
rule to infinite and semi-infinite integrals [14]. These 
procedures have been adopted to calculate Sommerfeld 
integral tails as described in e.g., [15], [16].  

In this paper, an efficient quadrature is obtained by setting 
the nodes of the trapezoidal integration equally spaced in 
logarithmic scale. Through the change of integration variable 
λ' = λꞏr, the first zero of the Bessel function is found at λ' = 
3.8317, beyond which the function oscillates. To preserve the 
accuracy when the oscillations of the integrand are significant, 
we use 5000 nodes for λ' from 10-2 to 100 and 20000 nodes for 
λ' from 100 to 104. Thanks to the change of integration 

variable, the number of nodes and their position along the 
integration domain can be left unaltered for different 
distances r. 

The ideal ground components of the LEMP are calculated 
directly in time domain by using the analytical formulation 
presented in [17] by assuming that the lightning return stroke 
current propagates along the channel according to the 
transmission line (TL) model. This analytical formulation, 
which is implemented in the LIOV–EMTP-RV code, allows 
for the representation of a generic waveform of the lightning 
current at the channel base. We assume the return-stroke 
propagation speed is equal to 150 m/μs. 

The electric field in time domain is obtained by the inverse 
Fourier transformation (IFT) of (2), which needs to be 
evaluated at different frequencies. To improve the 
computational performance of the IFT procedure, we 
reasonably disregard the frequency content of the lightning 
current above a few MHz. 

For the representation of the channel base current 
waveform we use the Heidler function [18] which in time 
domain is given by  
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The exponential approximation of the Heidler function 
described in [19] is adopted for the implementation in the 
frequency domain. 

Fig. 3 shows the magnitude of two different return stroke 
current waveforms representative of a typical first stroke and 
subsequent stroke, respectively. The first stroke is represented 
by a single Heidler function with the following parameters: 
I0 = 29.3 kA, τ1 = 1.44 μs, τ2 = 91.8 μs, n = 2. The subsequent 
stroke is given by the sum of two Heidler functions with the 
following parameters: I01=10.7 kA, τ11 = 0.25 μs, τ21=2.5 μs, 
n1 = 2, and I02 = 6.5 kA, τ12 = 2.1 μs, τ22 = 230 μs, n2 = 2. In both 
the cases, the magnitude of the current decreases quickly as 
frequency increases. 

 
Fig. 1. Magnitude of the Heidler function in frequency domain,  approximated 
with exponentials [19]. Comparison between a typical first and subsequent 
stroke. 
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For the IFT of the Sommerfeld component, we use the 
trapezoidal rule with 500 nodes equally spaced in logarithmic 
scale between 1 Hz and 107 Hz. We have verified that this 
number of nodes is adequate to obtain correct results up to 8 
µs.  

When a statistical population of channel base currents 
needs to be dealt with, e.g. when a Monte Carlo procedure is 
performed, the time to peak of the lightning current may 
deviate significantly from its median value and assume values 
up to some tens of µs. For these events, the simulation time 
must be increased significantly and 500 samples in frequency 
domain are in general not enough for preserving the IFT 
accuracy. To overcome this issue, a Hermite interpolation in 
the frequency domain is performed by adding 20 additional 
samples between two frequencies at which the Sommerfeld 
integral is evaluated.  

III. TIME DOMAIN RESULTS  

Fig. 2 compares the radial electric field due to a subsequent 
stroke calculated by using the proposed procedure with the 
results provided by the FEM model described in [11]. 
Different distances from the lightning channel, namely r = 51, 
502.5, 1001, 2001 m are considered. The observation points 
are 10 m above the soil, which has conductivity σg = 1 mS/m. 
These comparisons, along with others not reported here, 
confirm the good agreement between the FEM results and 
those provided by the proposed procedure, for observation 
points up to 4 km from the lightning channel. 

 
Fig. 2. Radial electric field due to a subsequent stroke calculated at r = 51, 
502.5, 1001, 2001 m from the lightning channel. σg = 1 mS/m. 

 
The following comparisons show the induced-overvoltages 

in a single-conductor, 1-km long overhead line calculated by 

using three different approaches for evaluating the radial 
component of the electric field, which for convenience we 
shall denote as follows: LIOV-Sommerfeld, which include the 
numerical solution of the Sommerfeld integral described in 
Section II, the FEM model, LIOV-CR, which adopts the CR 
formula (included in the time domain calculation procedure 
by using the piecewise linear transformation technique 
described in [20], [21]). The line conductor is located at a 
height of 10 m from the soil and its diameter measures 1 cm. 
The line terminations are matched.  

In Fig. 3 and Fig. 4, the overvoltage induced in the middle 
of the line and at line terminations by a subsequent stroke 
located at 50 m from the line center are shown for a ground 
conductivity σg = 1 mS/m. Similar comparison between the 
results obtained by using the FEM and the LIOV-EMTP-RV 
code with the CR formula can be found in [11].  

Fig. 5 shows the distribution of the overvoltage peak 
amplitude along the line. The use of the CR formula leads to a 
small overestimation of the induced voltage peak and a 
somewhat different waveform at the terminations with respect 
to the other two approaches. 

 
Fig. 3. Overvoltage in the middle of the line due to a subsequent stroke. 
σg = 1 mS/m. 

 
Fig. 4. Overvoltage at line terminations due to a subsequent stroke. 
σg = 1 mS/m. 

 
The same comparisons are reported in Fig. 6, Fig. 7, and 

Fig. 8 for a low ground conductivity σg = 0.1 mS/m. In this 
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case, the overvoltage peak is significantly underestimated by 
using the CR formula and the waveform appears more 
distorted with respect to the case of σg = 1 mS/m.  

 
Fig. 5. Overvoltage peak amplitude along the line due to a subsequent stroke. 
σg = 1 mS/m. 

 
Fig. 6. Overvoltage in the middle of the line due to a subsequent stroke. 
σg = 0.1 mS/m. 

 

 
Fig. 7. Overvoltage at line terminations due to a subsequent stroke. 
σg = 0.1 mS/m. 

 

 
Fig. 8. Overvoltage peak amplitude along the line due to a subsequent stroke. 
σg = 0.1 mS/m. 

 
The computational time required for the solution of the 

Sommerfeld integral is noticeably higher with respect to the 
CR approach. For a single time-domain simulation, e.g., to 
obtain the curves in 5, the LIOV-Sommerfeld and the LIOV-
CR solution require 63 s and 1.4 s, respectively, using a PC 
equipped with a 2.6 GHz Intel i7-6700HQ CPU running 64-
bit Windows 10. 
 

IV. LIGHTNING PERFORMANCE ASSESSMENT 

The lightning performance analysis is focused on a single-
conductor 2-km long overhead line. The appraisal of the 
lightning performance is carried out by using a Monte Carlo 
method. The results of this paper are obtained by randomly 
generating ntot = 20000 lightning events which are uniformly 
distributed within a striking area A of 4 km2. The area contains 
all the lightning events inducing voltages larger than 75 kV. 
Each lightning event is classified either as a direct strike to the 
line or as an indirect strike by using the electro-geometric 
model as in [22].  

The induced voltages are calculated by means of the 
LIOV–EMTP-RV code. The simulations are repeated to 
account for the effect of the ground conductivity using both 
the Sommerfeld integral and the CR formula. The expected 
annual numbers of events Fp able to induce overvoltages with 
peak amplitude larger than a given value V is:  

  p g

tot

n
F A N

n
  

where n is the number of indirect events generating, in any 
point of the line, overvoltages larger than V and Ng is the 
annual ground flash density, assumed equal to 1 flash/km2/yr. 

Besides the stroke location, each lightning event is 
characterized by four more parameters in order to define the 
Heidler function that represents the lightning channel base 
current waveform: peak Ip, front time tf, maximum front 
steepness Sm, and wave-tail time to half value th.  

The Monte Carlo method requires the generation of the 
parameter values according to the relevant multivariate 
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distribution. To this purpose, the log-normal probability 
distributions provided by Berger and Garbagnati in [23] and 
reported in Table I and Table II are adopted, where Tcr is the 
current time-to-crest. Further details on the procedure for the 
generation of the 20000 Heidler functions parameters are 
provided in [12]. 

 

TABLE I.  STATISTICAL PARAMETERS OF THE LOG-NORMAL DISTRIBUTIONS 
FOR NEGATIVE DOWNWARD FIRST STROKES [23] 

Parameter Median value 
Standard deviation 

of the parameter 
logarithm (base 10) 

Ip 30 kA 0.26 
Tcr 5.5 µs 0.31 
Sm 12 kA/µs 0.26 
th 75 µs 0.26 

 

TABLE II.  CORRELATION COEFFICIENTS BETWEEN PARAMETERS [23] 

Parameter Ip Tcr Sm th 
Tcr 0.37 1   
Sm 0.36 -0.21 1  
th 0.56 0.33 0.1 1 

 

 
 Fig. 9 shows the results of the statistical procedure based on 
the Monte Carlo method, i.e., the curves of the expected 
number per year of lightning events inducing overvoltages 
with peak amplitude greater than the value V in abscissa, for 
three different ground conductivity values. The curves show 
increasing discrepancies between the results obtained by the 
Sommerfeld integral and the CR formula as the value of V 
increases, especially for the lowest ground conductivities. For 
σg = 0.1 mS/m the CR formula underestimates the lightning 
performance. However, for typical insulation levels of 
medium voltage distribution lines, the CR formula provides 
results that are very close to the ones given by the numerical 
solution of the Sommerfeld integral. 
 

 
Fig. 9. Lightning performance of the line for different ground conductivities.  

 
 
 

CONCLUSION 

This paper proposes a method for the appraisal of the 
electric field generated by indirect lightning return strokes 
above a lossy ground, based on the numerical evaluation of 
the Sommerfeld integrals. The relevant procedure, which uses 
a trapezoidal rule with logarithmically spaced nodes, is both 
computationally efficient and accurate.  

Such a procedure has been included in the time domain 
solution of the field-to-line coupling equations implemented 
in the LIOV-EMTP-RV code via inverse Fourier transform. 
The results have been compared with those obtained by using 
a FEM model and with those achieved by using the Cooray-
Rubinstein formula. The time domain simulations of the 
induced overvoltages in an overhead line show that the FEM 
model gives results in close agreement with the ones obtained 
by using the numerical solution of the Sommerfeld integral, 
whilst the adoption of the Cooray-Rubinstein formula leads to 
attenuations and distortions for  very low ground conductivity 
values.  

In the indirect lightning performance of a typical 
distribution line, the differences between the overvoltages 
peak amplitudes calculated by the various approaches become 
negligible. Despite the slight overestimation of the voltage 
peak amplitudes, the Cooray-Rubinstein still represents a 
practical and consistent approach in statistical assessment of 
the indirect lightning performance, due to its much lower 
computational cost. 
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