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Abstract—One method to form a guaranteed passive 

frequency dependent equivalent (FDNE) of a large network is to 

use Brune’s realization approach to synthesize a network of 

cascaded sub-circuits, given a measured or plotted impedance 

frequency response characteristic. In this work, each of the 

cascaded sub-circuits obtained from Brune’s synthesis is 

mathematically represented by a set of Differential Algebraic 

Equations (DAEs), which are then combined together to form a 

state equation system of the full network. The resulting state 

space model can then directly be implemented on an 

Electromagnetic Transient (EMT) solver.  
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I.  INTRODUCTION 

REQUENCY Dependent Equivalent Networks (FDNEs)  

are used to speed up simulations by modeling parts of the 

network of less interest by simplified equivalents whilst  

maintaining the accuracy of the response from the driving 

point [1]. FDNEs were initially fitted by several branches of a 

fixed structure (e.g., several parallel arms with series R, L and 

C) which can be easily implemented in Electromagnetic 

Transient (EMT) programs [2-7]. However this representation 

was unable to capture any arbitrary passive system’s response 

accurately. Later, vector fitting was introduced to fit the scan 

data by means of rational functions [8-10]. These vector-fitted 

rational functions can be readily implemented in an EMT 

program using exponential terms and solved using recursive 

convolution [11] or directly modeled as RLC branches [12]. 

However, additional steps must be applied to vector fitting to 

give a passive realization, and this is not always 

straightforward. 

A new network realization-based approach was introduced 

by the authors [13] for modeling FDNEs utilizing Brune’s 

realization method [14]. Brune’s synthesis is a method to 

directly create a guaranteed passive formulation consisting of 

several sub-circuits. It can be applied to either tabulated or 

mathematically computed frequency response data. Vector 

fitting and other methods use a more complex algorithm for 
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passivity enforcement. Brune’s approach, by repeating some 

standard steps, results in a network which is a cascade 

connection of several sub-circuits (with positive R, L and C 

components and/or ideal transformers) with well-defined 

topology for each sub-circuit. To implement high order 

FDNEs using such networks, it is more efficient to make a 

state space model of the network, rather than modelling the 

resulting Brune’s equivalent circuit directly into the solver. 

This is because the voltages or currents at internal nodes of the 

Brune equivalent are of no interest, as only the terminal 

behavior is important from the external circuit’s point of view. 

On the other hand, a standard EMT solver would solve for 

these unnecessary internal quantities. Also, presence of several 

ideal transformers in the Brune’s realization method, makes 

the modeling difficult in EMT solver. Alternatively, the state 

variable form allows a more compact and numerically 

efficient solution. This can be done by modeling each of the 

sub-circuits in the form of a differential algebraic system and 

then connecting them together to yield a state space model of 

the whole network. This paper proposes a procedure to 

generate state space model of a large network made up of 

several cascade sub-circuits whose configurations and thus 

DAEs are already known. The state space representation can 

then be easily implemented in an EMT solver. Here we have 

used PSCAD/EMTDC. 

In addition to the FDNE application, the proposed state 

space generation of cascaded sub-circuits can be used in 

several applications. These include transmission cascaded pi 

sections [15], cross-bonded cables with cascaded segments 

[16], finite difference time domain models of a multiple 

segment cable transmission system [16] and nonuniform 

transmission line systems [17]. 

The layout of the remainder of the paper is as follows. 

Section II explains how DAEs of Brune’s sub-circuits are used 

to represent state-space model of a multi-port FDNE. Section 

III discusses the conversion of the DAE model into a 

conventional state-space model and its EMT implementation. 

Section IV shows simulation examples, and conclusions are 

presented in Section V. 

II.  FDNE IMPLEMENTATION 

Tellegen [20] extended Brune’s single-port synthesis 

approach to realize a passive multi-port network consisting of 

N sub-circuits as shown in Fig. 1.  

In the proposed approach, differential-algebraic equations 

and input and output relations are derived for each sub-circuit 

F 



and then combined to make the state-space of the entire 

network. 

A.  State Space Generating Procedure 

Tellegen’s procedure, similar to Brune’s single port 

realization method, ends with the very last step producing a 

pure resistance [15]. In our model, we start with this resistance 

as our first sub-circuit as in Fig. 1. In the multi-port case, this 

becomes a resistance matrix; with terminal voltage relation of 

v1
S=R×i1

S. Where v1
S is p×1 vector of the voltages, i1

S is p×1 

vector of the currents and R is a p×p resistance matrix. 

Differential equations and output relations of all other sub-

circuits can be derived as differential algebraic equations 

(DAEs) [18] given in (1) where matrix M could be singular. In 

(1), vector v and i are the terminal voltages and currents and x 

is the vector of state variable of the sub-circuits. A dot above x 

indicates its derivative. If M is non-singular, it can be inverted 

and the equations would be in classical state space form. The 

details of generation of DAEs of the sub-circuits will be 

discussed in section IV.  

In the DAE representation, currents of the terminals of each 

sub-circuit are taken as output and the voltages are inputs. 

This selection, enables the model to be implemented by an 

EMT solver as an admittance function. 

For convenience, the left hand side of a sub-circuit is 

referred to as the “sending end” and the right side as the 

“receiving end” as shown in Fig. 1. In equations (1.a) and 

(1.b), xk is the vector of state variables, iS
k and vS

k are the 

sending end and iR
k and vR

k are the receiving end currents and 

voltages vectors of the kth sub-circuit shown in Fig 1. 
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As seen in Fig. 1, the sending end of the kth sub-circuit 

directly connects to the receiving end of the (k–1)th sub-circuit. 

Hence, the sending end voltages and currents of the kth sub-

circuit are the same as the receiving end voltages and currents 

of the (k–1)th sub-circuit. Therefore, by cancelling all of these 

internal node voltages and currents, only the sending terminal 

of the Nth sub-circuit will remain which is the driving point 

terminal of the whole circuit. 

Starting from the 2nd sub-circuit, the receiving end currents 

and voltages (i2
R and v2

R which are equal to i1
S and v1

S) must 

be canceled in the formulation. 

We know that the first sub-circuit is a resistive network, as 

it is the last step in Brune’s synthesis. Also, in (1), vectors 
2 2[ ]TSx i  and 2 2[ ]TSx v are renamed as to 2

isX  and 2

vsX  

respectively to make the equations more compact. Therefore, 

to cancel i2
R and v2

R, the two equations of (2) can be written 

as: 
1 1 2 2

2 2 2 2 2 2 2 2

21 22 21 22

S S R R

is R vs R

v Ri v Ri

M X M i N X N v

 =  =

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 (2) 

Then i2
R and v2

R will be given by (3); 
1 22
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 (3) 

This means i2
R and v2

R can be written in the form of (4). 
2 2 2

11 12

2 2 2

21 22

R is vs

R is vs

i K X K X

v K X K X

 = +


= +

 (4) 

In which the matrix K is given by (5); 
1

11 12

2 2 2 2

21 22 22 22 21 21

0 0K K R I

K K M N M N

−
−     
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 (5) 

Substituting the relations for 2

Ri and 2

Rv from (4) in (1.a) 

gives: 
2 2 2 2 2

11 12 11 12

2 2 2 2 2

11 12 21 22

( )

( )

is is vs

vs is vs

M X M K X K X

N X N K X K X

+ + =

+ +
 (6) 

Equation (6) can be simplified to (7): 
2 1 2

is vsX P QX−=  (7) 

In which  
2 2 2

11 12 11 12 21

2 2 2

11 12 22 12 12

P M M K N K

Q N N K M K

 = + −


= + −
 (8) 

In (7), the state space equations can be found by 

unwrapping the compact form of 2

isX  and 2

vsX  into (9) 
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Fig. 1.  Cascade connection of N sub-circuits  
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 (9) 

Obviously (9) only gives the state space and output 

equations of combination of the 2nd and 1st sub-circuits 

together. For adding the 3rd and subsequent sub-circuits, a 

similar procedure as shown below is repeated. The resulting 

matrix equations are slightly different because we no longer 

have the condition that the first element was a resistor. 

The receiving end currents and voltages of the third sub-

circuit and later ( k

Ri and k

Rv which are equal to 1k

Si −  and 

1k

Sv − ) must be canceled. 

Assume that the state space form of all the k-1 sub-circuits 

together is given by (10). 
1k

ox −
 is a vector, including all the 

state variables of the previous k-1 sub-circuits.  
1 11 1

1 11 1

)

)

k kk k
o o

k kk k

S S

x xa A B

b C Di v

− −− −

− −− −

    
=       
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 (10) 

Then, (10.b) and (1.b) are used in (11) to add the kth sub-

circuit (k=3, 4, 5….) to the previous sub-circuits; 
1 1 1 1 1

1 1 1

21 22 21 22

k k k k k

S p S

k k k k k

R p R

k k k k k k k k

is R vs R

i C x D v

i C x D v

M X M i N X N v

− − − − −

− − −

 = +

 = +


+ = +

 (11) 

Solving (11) gives the ik
R and vk

R as shown in (12). 
1

11 12 13

1

21 22 23

k k k k

R is vs o

k k k k

R is vs o

i T X T X T x

v T X T X T x

−

−

 = + +


= + +

 (12) 

Where the matrix T is given in (13), 
1

1 1

22 22 21 21
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0

k k

k k k k

I D C
T

M N M N

−
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Then after substituting k

Ri and k

Rv from (12) in (1.a): 

1
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1
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Equation (14) can be simplified as in (15). 
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Equation (15) only includes the “derivatives” of state 

variables of the kth sub-circuit. The equations resulting from 

the kth sub-circuit must be recursively combined with 

derivatives of those from the first k-1 sub-circuits. Substituting 
k

Rv into (10.a), and considering (15) gives (16): 
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Then the whole state space equation of the k sub-circuits 

together becomes (17); 
1 1

1 1

1 1 1 1
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 (17) 

To see the classical state space form all the k sub-circuits, 

(17) can be unwrapped into (18). 
1 1

1 1

1 1
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The process of removing internal nodes and recursively 

growing the state space matrices continues to k=N include all 

of the N sub-circuits to form AN, BN, CN and DN in (19) where 
N

ox  is the vector of state variable of the whole network. 
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B.  Comments on Brune’s Realization Method 

Brune’s method includes repeating cycles, each with four 

steps to generate a network that fits the tabulated impedance 

function. The network in each Brune cycle is as shown in Fig. 

2. Some of the elements in Fig. 2 could turn out to be zero or 

infinity. At the end of the realization procedure, only the 
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Fig. 2.  Sub-circuits configuration in Brune’s realization  



resistive network Rend is left.  

In addition, Brune’s method inherently preserves the 

passivity of the realized network, as all R, L and C component 

values are non-negative numbers. Brune’s synthesis can 

realize a passive network for any positive real function [13]. 

The final realized network is made up of a cascade 

connection of several sub-circuits with known configuration of 

the type shown in Fig. 2, which is terminated in a resistive 

load considered as the first sub-circuit. 

The ideal transformer in the circuit makes it difficult to 

obtain the standard state space form of this special circuit in a 

straightforward way. However, obtaining the DAEs for each 

sub-circuit is straightforward as will be shown next. 

C.  Generation of DAEs for Sub-Circuits 

To create the state space equations, a variety of approaches 

are available e.g. modified nodal analysis (MNA) [18] or the 

conventional tree and co-tree method. In this work, the 

equations are derived using a slightly modified tree and co-

tree method applied to the sub-circuit in Fig. 2. Due to the 

ideal transformer in the circuit, there will be a coupling 

between the output current equations and derivative of the 

state variables which forces the DAEs to be in form of (20) in 

which inductor currents and capacitor voltages are taken as the 

state variables (x), terminal voltages (vS) are the inputs and 

terminal currents (iS) are the outputs. The full matrices on M 

and N are given in the appendix. The appendix explains why 

matrix M is singular. 

   
x x

M N
y u

   
=   

   
 (20) 

III.  IMPLEMENTATION ON AN EMT SOLVER 

The generated state space model of the network can be 

readily transferred to any EMT solver by doing discrete time 

integration with a method such as the trapezoidal rule.  

In this work, the FDNE module in PSCAD is used which 

itself accepts state space ABCD matrices data via an input file. 

Nevertheless, this FDNE module requires the state matrix A to 

be in diagonal form. However, the diagonalization of A can be 

done via a similarity transformation if needed [15] which is 

explained below. 

Considering Y(s) is the admittance of the network using 

state space form in (21), the matrix A can be converted into 

diagonal form   with the help of the eigenvector matrix T. 
1

1 1

( ) ( )

( ) ( )

Y s C sI A B D

Y s CT sI T B D

−

− −

= − +

 = − +
 (21) 

If matrix T is complex, a further step is needed to make the 

state space matrices real. This can be done by defining residue 

matrices Rs as follows; 

1

(:, ). ( ,:) 1,2,3,...s x x

x x

R C s B s s n

Where C CT and B T B−

= =

= =
 (22) 

In (22), matrices Rs are formed by the multiplication of the 

sth column of Cx by the sth row of Bx. There will be n matrices, 

where n is the number of states.  

The new state space matrices after transformation will be of 

the form given in (23) where, λs are the eigenvalues of the 

original state matrix A and identity matrix of [I] are p×p with 

p is the number of ports in the final circuit. 
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 (23) 

IV.  SIMULATION RESULTS 

To verify the proposed algorithm for the state space model 

generation and the EMT implementation, two case studies are 

presented in the section. 

A.  Case 1: A Simple Two Port Circuit 

To validate the functionality of the method, a two port 

FDNE of the RLC network shown in Fig. 3 is scanned and 

then realized using Brune’s approach. Then the network is 

converted into state-space model using proposed method. In 

this case, The FDNE is made out of 6 sub-circuits. 
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Fig. 3  The two port network under study 

Fig. 4 shows the step response of the original network and 

the proposed state space model. 1kV and 2kV Step voltages 

are applied to port 1 and 2 at time 0.01sec and 0.1sec 

respectively. The graph shows excellent agreement between 

the responses.  

 
Fig. 4  Step response of the original network compared to the proposed state 
space model 



B.  Case 2: A More Realistic Network 

The network in Fig. 5 shows a 22kV source connected to a 

remote load with a 100km long cable and a filter bank is also 

present. FDNE of the network from the Bus 2 point of view is 

modeled using Brune’s method which resulted in 14 sib-

circuits of the type shown in Fig. 2. 

To test this case, two line-to-ground faults (0.05 ohms) are 

applied on Bus 2 and at the middle of the short line at t = 

0.02s and t=0.20s respectively. Duration of each fault is 0.06s. 

Fig. 6 shows the source current before and after applying 

each faults comparing the original network and the reduced 

model using proposed state space model. Excellent agreement 

is achieved between the simulation of the original network and 

the reduced one in both transient and the steady state 

responses. 
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Fig. 5  The network, fault locations and the sending end current (Is). Data is 

in the appendix 

 
Fig. 6  Source current comparison during and after faults 

V.  CONCLUSION  

In this work a new procedure is introduced to generate the 

state space model of a network composed of multiple cascade 

sub-circuits which are represented by DAEs. This procedure is 

a necessary step in implementing Brune’s procedure for a 

multi-port Frequency Dependent Network Equivalent, and 

gives a guaranteed passive realization for the FDNE. The state 

space model of the network from the driving point is 

systematically generated for implementing in an EMT 

program. The driving point admittance of the network is 

modeled by the proposed state space approach. The procedure 

to implement the model in an EMT solver such as 

PSCAD/EMTDC is presented. The method is validated by 

some case studies and different scenarios in which the time 

domain responses obtained from the proposed state space 

model of the FDNE and the original unreduced networks are 

compared. Results show excellent agreement between the 

responses. 

Brune’s procedure could be terminated at any iteration with 

a partial realization and still yield a guaranteed passive 

network. The accuracy versus simulation time tradeoff is an 

area for future investigation. 

VI.  APPENDIX  

Formation of matrix M is given in part A and example 

system data is provided in part B. 

A.  Matrix M and N of the Brune’s Sub-Circuit  

M and N matrices of the DAEs derived for the circuit in 

Fig. 2 are given in (A.1). The matrix M is singular due to the 

two linearly dependant rows containing only 1 and m. 

Therefore, it is not possible to directly derive the classical 

state space form of the sub-circuit. 

B.  Example System Data 

Small T-line sections modelled as L-R circuits: 

L=50 mH, R =5 Ω 

RL Loads: 

R = 125 Ω, L =180 mH 

Filters: 1 MVAR equally distributed between 3rd, 11th/13th 

double tuned and 24th/26th double tuned HP filters. 

Cable: 

Resistivity = 1.68e-8 Ω.m, Relative Permittivity = 4.1 and 

Relative Permeability = 1. 

 
Fig. 7  Cross section of the cable buried 1 meter underground.  
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